Mots-clés : Lebesgue measure, Jordan domain, Jordan arc.
@article{MZM_2012_92_6_a7,
author = {O. N. Kosukhin},
title = {On {Estimates} of {Lengths} of {Lemniscates}},
journal = {Matemati\v{c}eskie zametki},
pages = {872--883},
year = {2012},
volume = {92},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a7/}
}
O. N. Kosukhin. On Estimates of Lengths of Lemniscates. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 872-883. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a7/
[1] P. Erdős, F. Herzog, G. Piranian, “Metric properties of polynomials”, J. Analyse Math., 6:1 (1958), 125–148 | DOI | MR | Zbl
[2] E. P. Dolzhenko, Differentsialnye svoistva funktsii i nekotorye voprosy teorii priblizhenii, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1960
[3] E. P. Dolzhenko, “Nekotorye metricheskie svoistva algebraicheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 27:2 (1963), 241–252 | MR | Zbl
[4] A. Eremenko, W. Hayman, “On the length of lemniscates”, Michigan Math. J., 46:2 (1999), 409–415 | DOI | MR | Zbl
[5] V. I. Danchenko, “Dliny lemniskat. Variatsii ratsionalnykh funktsii”, Matem. sb., 198:8 (2007), 51–58 | DOI | MR | Zbl
[6] A. Fryntov, F. Nazarov, “New estimates for the length of the Erdős–Herzog–Piranian lemniscate”, Linear and Complex Analysis, Amer. Math. Soc. Transl. Ser. 2, 226, Amer. Math. Soc., Providence, RI, 2009, 49–60, arXiv: 0808.0717 | MR | Zbl
[7] V. I. Bogachev, Osnovy teorii mery, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2003
[8] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl