On Estimates of Lengths of Lemniscates
Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 872-883.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any natural number $n$ and any $C>0$, we obtain an integral formula for calculating the lengths $|L(P_n,C)|$ of the lemniscates $$ L(P_n,C):=\{z:|P_n(z)|=C\} $$ of algebraic polynomials $P_n(z):=z^n+c_{n-1}z^{n-1}+\dots+c_0$ in the complex variable $z$ with complex coefficients $c_j$, $j=0, \dots, n-1$, and establish the upper bound for the quantities $\lambda_n:=\sup\{|L(P_n,1)|: P_n(z)\}$, which is currently best for $3\leq n\leq10^{14}$. We also study the properties of the derivative $S'(C)$ of the area function $S(C)$ of the set $\{z:|P_n(z)|\leq C\}$.
Keywords: lemniscate of an algebraic polynomial, length of a lemniscate, conformal $n$-sheeted mapping
Mots-clés : Lebesgue measure, Jordan domain, Jordan arc.
@article{MZM_2012_92_6_a7,
     author = {O. N. Kosukhin},
     title = {On {Estimates} of {Lengths} of {Lemniscates}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {872--883},
     publisher = {mathdoc},
     volume = {92},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a7/}
}
TY  - JOUR
AU  - O. N. Kosukhin
TI  - On Estimates of Lengths of Lemniscates
JO  - Matematičeskie zametki
PY  - 2012
SP  - 872
EP  - 883
VL  - 92
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a7/
LA  - ru
ID  - MZM_2012_92_6_a7
ER  - 
%0 Journal Article
%A O. N. Kosukhin
%T On Estimates of Lengths of Lemniscates
%J Matematičeskie zametki
%D 2012
%P 872-883
%V 92
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a7/
%G ru
%F MZM_2012_92_6_a7
O. N. Kosukhin. On Estimates of Lengths of Lemniscates. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 872-883. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a7/

[1] P. Erdős, F. Herzog, G. Piranian, “Metric properties of polynomials”, J. Analyse Math., 6:1 (1958), 125–148 | DOI | MR | Zbl

[2] E. P. Dolzhenko, Differentsialnye svoistva funktsii i nekotorye voprosy teorii priblizhenii, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1960

[3] E. P. Dolzhenko, “Nekotorye metricheskie svoistva algebraicheskikh giperpoverkhnostei”, Izv. AN SSSR. Ser. matem., 27:2 (1963), 241–252 | MR | Zbl

[4] A. Eremenko, W. Hayman, “On the length of lemniscates”, Michigan Math. J., 46:2 (1999), 409–415 | DOI | MR | Zbl

[5] V. I. Danchenko, “Dliny lemniskat. Variatsii ratsionalnykh funktsii”, Matem. sb., 198:8 (2007), 51–58 | DOI | MR | Zbl

[6] A. Fryntov, F. Nazarov, “New estimates for the length of the Erdős–Herzog–Piranian lemniscate”, Linear and Complex Analysis, Amer. Math. Soc. Transl. Ser. 2, 226, Amer. Math. Soc., Providence, RI, 2009, 49–60, arXiv: 0808.0717 | MR | Zbl

[7] V. I. Bogachev, Osnovy teorii mery, Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2003

[8] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl