On the Geometry of the Characteristic Vector of an~$\mathit{lcQS}$-Manifold
Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 864-871
Voir la notice de l'article provenant de la source Math-Net.Ru
We study conditions under which the characteristic vector of a normal $\mathit{lcQS}$-manifold is a torsion-forming or even a concircular vector field. We prove that the following assertions are equivalent: an $\mathit{lcQS}$-structure is normal, and its characteristic vector is a torsion-forming vector field; an $\mathit{lcQS}$-structure is normal, and its characteristic vector is a concircular vector field; an $\mathit{lcQS}$-structure is locally conformally cosymplectic and has a closed contact form.
Keywords:
Sasakian structure, Riemannian manifold, contact form characteristic vector, concircular vector field, torsion-forming vector field.
Mots-clés : $\mathit{AC}$-structure, $\mathit{lcQS}$-structure
Mots-clés : $\mathit{AC}$-structure, $\mathit{lcQS}$-structure
@article{MZM_2012_92_6_a6,
author = {V. F. Kirichenko and M. A. Terpstra},
title = {On the {Geometry} of the {Characteristic} {Vector} of an~$\mathit{lcQS}${-Manifold}},
journal = {Matemati\v{c}eskie zametki},
pages = {864--871},
publisher = {mathdoc},
volume = {92},
number = {6},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a6/}
}
TY - JOUR
AU - V. F. Kirichenko
AU - M. A. Terpstra
TI - On the Geometry of the Characteristic Vector of an~$\mathit{lcQS}$-Manifold
JO - Matematičeskie zametki
PY - 2012
SP - 864
EP - 871
VL - 92
IS - 6
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a6/
LA - ru
ID - MZM_2012_92_6_a6
ER -
V. F. Kirichenko; M. A. Terpstra. On the Geometry of the Characteristic Vector of an~$\mathit{lcQS}$-Manifold. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 864-871. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a6/