Hopf Subalgebras and Hopf Ideals of Certain Semisimple Hopf Algebras
Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 904-911 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, for semisimple Hopf algebras that have only one non-one-dimensional irreducible representation, all Hopf ideals are described and, under some restriction concerning the number of group elements in the dual Hopf algebra, some series of Hopf subalgebras are found. Moreover, the quotient Hopf algebras of these semisimple Hopf algebras are described.
Keywords: Hopf algebra, dual Hopf algebra, irreducible representation, projective representation.
Mots-clés : semisimple decomposition, quotient Hopf algebra
@article{MZM_2012_92_6_a10,
     author = {R. B. Mukhatov},
     title = {Hopf {Subalgebras} and {Hopf} {Ideals} of {Certain} {Semisimple} {Hopf} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {904--911},
     year = {2012},
     volume = {92},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a10/}
}
TY  - JOUR
AU  - R. B. Mukhatov
TI  - Hopf Subalgebras and Hopf Ideals of Certain Semisimple Hopf Algebras
JO  - Matematičeskie zametki
PY  - 2012
SP  - 904
EP  - 911
VL  - 92
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a10/
LA  - ru
ID  - MZM_2012_92_6_a10
ER  - 
%0 Journal Article
%A R. B. Mukhatov
%T Hopf Subalgebras and Hopf Ideals of Certain Semisimple Hopf Algebras
%J Matematičeskie zametki
%D 2012
%P 904-911
%V 92
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a10/
%G ru
%F MZM_2012_92_6_a10
R. B. Mukhatov. Hopf Subalgebras and Hopf Ideals of Certain Semisimple Hopf Algebras. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 904-911. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a10/

[1] V. A. Artamonov, “O poluprostykh konechnomernykh algebrakh Khopfa”, Matem. sb., 198:9 (2007), 3–28 | DOI | MR | Zbl

[2] V. A. Artamonov, I. A. Chubarov, “Dual algebras of some semisimple finite-dimensional Hopf algebras”, Modules and Comodules, Trends Math., Birkhäuser-Verlag, Basel, 2008, 65–85 | MR | Zbl

[3] V. A. Artamonov, I. A. Chubarov, “Properties of some semisimple Hopf algebras”, Algebras, Representations and Applications, Contemp. Math., 483, Amer. Math. Soc., Providence, RI, 2009, 23–36 | MR | Zbl

[4] R. B. Mukhatov, “O poluprostykh konechnomernykh algebrakh Khopfa”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2011, no. 1, 60–63 | MR