Mixed Moduli of Smoothness in Mixed Metrics
Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 747-761.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a mixed modulus of smoothness of positive order, its relationship with the norms of partial sums of a Fourier series in a mixed metric is obtained. The relation between mixed moduli of smoothness of positive order in different mixed metrics is established.
Keywords: mixed modulus of smoothness, Fourier series, measurable function, mixed metric, the Weyl derivative, trigonometric polynomial, Hölder's inequality.
@article{MZM_2012_92_5_a9,
     author = {B. V. Simonov},
     title = {Mixed {Moduli} of {Smoothness} in {Mixed} {Metrics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {747--761},
     publisher = {mathdoc},
     volume = {92},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a9/}
}
TY  - JOUR
AU  - B. V. Simonov
TI  - Mixed Moduli of Smoothness in Mixed Metrics
JO  - Matematičeskie zametki
PY  - 2012
SP  - 747
EP  - 761
VL  - 92
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a9/
LA  - ru
ID  - MZM_2012_92_5_a9
ER  - 
%0 Journal Article
%A B. V. Simonov
%T Mixed Moduli of Smoothness in Mixed Metrics
%J Matematičeskie zametki
%D 2012
%P 747-761
%V 92
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a9/
%G ru
%F MZM_2012_92_5_a9
B. V. Simonov. Mixed Moduli of Smoothness in Mixed Metrics. Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 747-761. http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a9/

[1] A. Zigmund, Trigonometricheskie ryady. T. 2, Mir, M., 1965 | MR | Zbl

[2] M. K. Potapov, B. V. Simonov, “On the interrelation of the generalized Besov–Nikol'skii and Weyl–Nikol'skii classes of functions”, Anal. Math., 22:4 (1996), 299–316 | DOI | MR | Zbl

[3] B. V. Simonov, O svoistvakh preobrazovannogo ryada Fure, Dep. v VINITI No 3031-81

[4] M. K. Potapov, B. V. Simonov, S. Yu. Tikhonov, “O sootnosheniyakh mezhdu modulyami gladkosti v raznykh metrikakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2009, no. 3, 17–25 | MR

[5] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[6] S. M. Nikolskii, “Funktsii s dominiruyuschei smeshannoi proizvodnoi, udovletvoryayuschei kratnomu usloviyu Geldera”, Sib. matem. zhurn., 4 (1963), 1342–1364 | MR | Zbl

[7] M. K. Potapov, B. V. Simonov, S. Yu. Tikhonov, “Sootnosheniya mezhdu smeshannymi modulyami gladkosti i teoremy vlozheniya klassov Nikolskogo”, Teoriya funktsii i differentsialnye uravneniya, Sbornik statei. K 105-letiyu so dnya rozhdeniya akademika Sergeya Mikhailovicha Nikolskogo, Tr. MIAN, 269, MAIK, M., 2010, 204–214 | MR | Zbl

[8] B. Simonov, S. Tikhonov, “Sharp Ul'yanov-type inequalities using fractional smoothness”, J. Approx. Theory, 162:9 (2010), 1654–1684 | DOI | MR | Zbl

[9] R. Taberski, “Differences, moduli and derivatives of fractional orders”, Comment. Math., 19:2 (1977), 389–400 | MR | Zbl

[10] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR | Zbl

[11] M. K. Potapov, B. Lakovich, B. V. Simonov, “O vzaimosvyazi klassov funktsii Besova–Nikolskogo i Veilya–Nikolskogo v smeshannoi metrike”, Math. Montisnigri, 12 (2000), 63–85 | MR

[12] A. P. Uninskii, “Neravenstva v smeshannoi norme dlya trigonometricheskikh polinomov i tselykh funktsii konechnoi stepeni”, Teoremy vlozheniya i ikh primeneniya, Materialy Vsesoyuznogo simpoziuma po teoremam vlozheniya, Baku, 1966

[13] M. F. Timan, “O vlozhenii $L_p^{(k)}$ klassov funktsii”, Izv. vuzov. Matem., 10 (1974), 61–74 | MR | Zbl

[14] M. K. Potapov, “Teoremy vlozheniya v smeshannoi metrike”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 8, Sbornik rabot, Tr. MIAN SSSR, 156, 1980, 143–156 | MR | Zbl