On the Pseudonormal Form of Real Autonomous Systems with Two Pure Imaginary Eigenvalues
Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 731-746.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with real autonomous systems of ordinary differential equations in a neighborhood of a nondegenerate singular point such that the matrix of the linearized system has two pure imaginary eigenvalues, all other eigenvalues lying outside the imaginary axis. The reducibility of such systems to pseudonormal form is studied. The notion of resonance is refined, and the notions of removable and irremovable resonances are introduced.
Keywords: ordinary differential equations, linearization, normal form, pseudonormal form, resonance.
@article{MZM_2012_92_5_a8,
     author = {V. S. Samovol},
     title = {On the {Pseudonormal} {Form} of {Real} {Autonomous} {Systems} with {Two} {Pure} {Imaginary} {Eigenvalues}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {731--746},
     publisher = {mathdoc},
     volume = {92},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a8/}
}
TY  - JOUR
AU  - V. S. Samovol
TI  - On the Pseudonormal Form of Real Autonomous Systems with Two Pure Imaginary Eigenvalues
JO  - Matematičeskie zametki
PY  - 2012
SP  - 731
EP  - 746
VL  - 92
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a8/
LA  - ru
ID  - MZM_2012_92_5_a8
ER  - 
%0 Journal Article
%A V. S. Samovol
%T On the Pseudonormal Form of Real Autonomous Systems with Two Pure Imaginary Eigenvalues
%J Matematičeskie zametki
%D 2012
%P 731-746
%V 92
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a8/
%G ru
%F MZM_2012_92_5_a8
V. S. Samovol. On the Pseudonormal Form of Real Autonomous Systems with Two Pure Imaginary Eigenvalues. Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 731-746. http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a8/

[1] V. S. Samovol, “O novykh rezonansakh i normalnoi forme avtonomnykh sistem s odnim nulevym kornem”, Matem. zametki, 88:1 (2010), 63–77 | MR | Zbl

[2] A. D. Bryuno, Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, M., Nauka, 1979 | MR | Zbl

[3] A. D. Bryuno, “Analiticheskaya forma differentsialnykh uravnenii”, Tr. MMO, 25, GIFML, M., 1971, 119–262 | MR | Zbl

[4] V. S. Samovol, “Ekvivalentnost sistem differentsialnykh uravnenii v okrestnosti osoboi tochki”, Tr. MMO, 44, GIFML, M., 1982, 213–234 | MR | Zbl

[5] G. R. Belitskii, “Gladkaya ekvivalentnost rostkov vektornykh polei s odnim nulevym ili paroi chisto mnimykh sobstvennykh znachenii”, Funkts. analiz i ego pril., 20:4 (1986), 1–8 | MR | Zbl

[6] V. Vazov, Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968 | Zbl

[7] A. N. Kuznetsov, “Differentsiruemye resheniya vyrozhdayuschikhsya sistem obyknovennykh uravnenii”, Funkts. analiz i ego pril., 6:2 (1972), 41–51 | MR | Zbl

[8] V. S. Samovol, “Konechno-gladkaya normalnaya forma avtonomnoi sistemy s dvumya chisto mnimymi kornyami”, Matem. zametki, 80:2 (2006), 270–281 | MR | Zbl

[9] A. D. Bryuno, V. Yu. Petrovich, Normalnye formy sistemy ODU, Preprint No 18, IPM RAN, 2000