On the Convergence of Orthorecursive Expansions in Nonorthogonal Wavelets
Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 707-720.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is concerned with orthorecursive expansions which are generalizations of orthogonal series to families of nonorthogonal wavelets, binary contractions and integer shifts of a given function $\varphi$. It is established that, under certain not too rigid constraints on the function $\varphi$, the expansion for any function $f\in L^2(\mathbb{R})$ converges to $f$ in $L^2(\mathbb{R})$. Such an expansion method is stable with respect to errors in the calculation of the coefficients. The results admit a generalization to the $n$-dimensional case.
Keywords: orthorecursive expansion, Parseval's equality, Bessel's identity, trigonometric system, Jackson's inequality.
Mots-clés : nonorthogonal wavelets
@article{MZM_2012_92_5_a6,
     author = {A. Yu. Kudryavtsev},
     title = {On the {Convergence} of {Orthorecursive} {Expansions} in {Nonorthogonal} {Wavelets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {707--720},
     publisher = {mathdoc},
     volume = {92},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a6/}
}
TY  - JOUR
AU  - A. Yu. Kudryavtsev
TI  - On the Convergence of Orthorecursive Expansions in Nonorthogonal Wavelets
JO  - Matematičeskie zametki
PY  - 2012
SP  - 707
EP  - 720
VL  - 92
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a6/
LA  - ru
ID  - MZM_2012_92_5_a6
ER  - 
%0 Journal Article
%A A. Yu. Kudryavtsev
%T On the Convergence of Orthorecursive Expansions in Nonorthogonal Wavelets
%J Matematičeskie zametki
%D 2012
%P 707-720
%V 92
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a6/
%G ru
%F MZM_2012_92_5_a6
A. Yu. Kudryavtsev. On the Convergence of Orthorecursive Expansions in Nonorthogonal Wavelets. Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 707-720. http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a6/

[1] T. P. Lukashenko, “Rekursivnye razlozheniya, podobnye ortogonalnym”, Matematika, ekonomika, ekologiya, obrazovanie, VII Mezhdunarodnaya konferentsiya “Ryady Fure i ikh prilozheniya” (26 maya–1 iyunya 1999 g.), Tezisy dokladov, Rostov-na-Donu, 1999, 331

[2] T. P. Lukashenko, “O svoistvakh ortorekursivnykh razlozhenii po neortogonalnym sistemam”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2001, no. 1, 6–10 | MR | Zbl

[3] B. S. Stechkin, S. B. Stechkin, “Srednee kvadraticheskoe i srednee arifmeticheskoe”, DAN SSSR, 137:2 (1961), 287–290 | MR | Zbl

[4] Ch. Chui, Vvedenie v veivlety, Mir, M., 2001 | MR | Zbl

[5] V. I. Filippov, P. Oswald, “Representation in $L_p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl

[6] A. Yu. Kudryavtsev, “Ortorekursivnye razlozheniya po sistemam szhatii i sdvigov”, Mezhdunarodnaya shkola-seminar po geometrii i analizu, posvyaschennaya 90-letiyu N. V. Efimova (Abrau-Dyurso, 5–11 sentyabrya 2000 g.), Tezisy dokladov, Rostovskii gos. un-t, Rostov-na-Donu, 2000, 127–129

[7] A. Yu. Kudryavtsev, “Ortorekursivnye razlozheniya po sistemam neortogonalnykh vspleskov”, Sovremennye metody teorii funktsii i smezhnye problemy, Materialy konferentsii, Voronezhskii gos. un-t, Voronezh, 2003, 137–138

[8] R. A. DeVore, V. N. Temlyakov, “Some remarks on greedy algorithms”, Adv. Comput. Math., 5:2-3 (1996), 173–187 | DOI | MR | Zbl

[9] V. V. Galatenko, E. D. Livshits, “Obobschennye priblizhennye slabye zhadnye algoritmy”, Matem. zametki, 78:2 (2005), 186–201 | MR | Zbl

[10] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR | Zbl

[11] I. Dobeshi, Desyat lektsii po veivletam, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001 | MR | Zbl

[12] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl

[13] N. P. Korneichuk, “Tochnaya konstanta v teoreme D. Dzheksona o nailuchshem ravnomernom priblizhenii nepreryvnykh periodicheskikh funktsii”, Dokl. AN SSSR, 145:3 (1962), 514–515 | MR | Zbl

[14] V. V. Galatenko, “Ob ortorekursivnom razlozhenii s oshibkami v vychislenii koeffitsientov”, Izv. RAN. Ser. matem., 69:1 (2005), 3–16 | MR | Zbl

[15] T. P. Lukashenko, V. A. Sadovnichii, “O rekursivnykh razlozheniyakh po tsepochke sistem”, DAN, 425:6 (2009), 741–746 | MR | Zbl