Limit Behavior of a Critical Branching Process with Immigration
Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 670-677.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the Sevastyanov branching process with immigration which is a Cox process is studied. The generating function of the number of particles of the process is obtained. For critical processes, the limit behavior of the number of particles at infinity is established.
Keywords: branching process with immigration, Cox process
Mots-clés : Laplace transform, Lebesgue theorem.
@article{MZM_2012_92_5_a2,
     author = {O. A. Butkovskii},
     title = {Limit {Behavior} of a {Critical} {Branching} {Process} with {Immigration}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {670--677},
     publisher = {mathdoc},
     volume = {92},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a2/}
}
TY  - JOUR
AU  - O. A. Butkovskii
TI  - Limit Behavior of a Critical Branching Process with Immigration
JO  - Matematičeskie zametki
PY  - 2012
SP  - 670
EP  - 677
VL  - 92
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a2/
LA  - ru
ID  - MZM_2012_92_5_a2
ER  - 
%0 Journal Article
%A O. A. Butkovskii
%T Limit Behavior of a Critical Branching Process with Immigration
%J Matematičeskie zametki
%D 2012
%P 670-677
%V 92
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a2/
%G ru
%F MZM_2012_92_5_a2
O. A. Butkovskii. Limit Behavior of a Critical Branching Process with Immigration. Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 670-677. http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a2/

[1] A. Yakovlev, N. Yanev, “Age and residual lifetime distributions for branching processes”, Statist. Probab. Lett., 77:5 (2007), 503–513 | DOI | MR | Zbl

[2] B. A. Sevastyanov, Vetvyaschiesya protsessy, Nauka, M., 1971 | MR | Zbl

[3] L. Hanin, O. Hyrien, J. Bedford, A. Yakovlev, “A comprehensive stochastic model of irradiated cell populations in culture”, J. Theoret. Biol., 239:4 (2006), 401–416 | DOI | MR

[4] P. Haccou, P. Jagers, V. A. Vatutin, Branching Processes: Variation, Growth, and Extinction of Populations, Camb. Stud. Adapt. Dyn., 5, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[5] C. V. Nagaev, “Predelnaya teorema dlya vetvyaschikhsya protsessov s immigratsiei”, TVP, 20:1 (1975), 178–180 | MR | Zbl

[6] M. I. Goldstein, “Critical age-dependent branching processes: Single and multitype”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 17 (1971), 74–88 | MR | Zbl

[7] I. Rahimov, Random Sums and Branching Stochastic Processes, Lecture Notes in Statist., 96, Springer-Verlag, New York, 1995 | MR | Zbl

[8] I. S. Badalbaev, A. M. Zubkov, “Predelnye teoremy dlya posledovatelnosti vetvyaschikhsya protsessov s immigratsiei”, TVP, 28:2 (1983), 382–388 | MR | Zbl

[9] V. M. Shurenkov, “Dve predelnye teoremy dlya kriticheskikh vetvyaschikhsya protsessov”, TVP, 21:3 (1976), 548–558 | MR | Zbl

[10] K. B. Athreya, P. R. Parthasarathy, G. Sankaranarayanan, “Supercritical age-dependent branching processes with immigration”, J. Appl. Probab., 11:4 (1974), 695–702 | DOI | MR | Zbl

[11] T. E. Harris, The Theory of Branching Processes, Dover Phoenix Ed., Dover Publ., Mineola, NY, 2002 | MR | Zbl