Solution of an Algebraic Equation Using an Irrational Iteration Function
Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 778-785.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for the choice $z_{n}^{[0]}=-a_{1}$ of the initial approximation, the sequence of approximations $z_{n}^{[i+1]}=\varphi_{n}(z_{n}^{[i]})$, $[i]=0,1,2,\dots$, of a solution of every canonical algebraic equation with real positive roots which is of the form $$ P_{n}(z)=z^{n}+a_{1}z^{n-1}+a_{2}z^{n-2}+\cdots+a_{n}=0,\qquad n=1,2,\dots, $$ where the sequence is generated by the irrational iteration function $\varphi_{n}(z)=(z^{n}-P_{n}(z))^{1/n}$, converges to the largest root $z_{n}$. Examples of numerical realization of the method for the problem of determining the energy levels of electron systems in a molecule and in a crystal are presented. The possibility of constructing similar irrational iteration functions in order to solve an algebraic equation of general form is considered.
Keywords: canonical algebraic equation, largest root, irrational iteration, electron system in molecules and crystals, method of divided differences.
@article{MZM_2012_92_5_a11,
     author = {L. S. Chkhartishvili},
     title = {Solution of an {Algebraic} {Equation} {Using} an {Irrational} {Iteration} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {778--785},
     publisher = {mathdoc},
     volume = {92},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a11/}
}
TY  - JOUR
AU  - L. S. Chkhartishvili
TI  - Solution of an Algebraic Equation Using an Irrational Iteration Function
JO  - Matematičeskie zametki
PY  - 2012
SP  - 778
EP  - 785
VL  - 92
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a11/
LA  - ru
ID  - MZM_2012_92_5_a11
ER  - 
%0 Journal Article
%A L. S. Chkhartishvili
%T Solution of an Algebraic Equation Using an Irrational Iteration Function
%J Matematičeskie zametki
%D 2012
%P 778-785
%V 92
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a11/
%G ru
%F MZM_2012_92_5_a11
L. S. Chkhartishvili. Solution of an Algebraic Equation Using an Irrational Iteration Function. Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 778-785. http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a11/

[1] B. L. Van der Varden, Algebra, Nauka, M., 1979 | MR | Zbl

[2] Dzh. Traub, Iteratsionnye metody resheniya uravnenii, Mir, M., 1985 | MR | Zbl

[3] L. S. Chkhartishvili, “Iteratsionnoe reshenie vekovogo uravneniya”, Matem. zametki, 77:2 (2005), 303–310 | MR | Zbl

[4] L. S. Chkhartishvili, “Ob'em oblasti peresecheniya trekh sfer”, Matem. zametki, 69:3 (2001), 466–476 | MR | Zbl

[5] L. Chkhartishvili, Kvaziklassicheskaya teoriya osnovnogo sostoyaniya veschestva, Tekhn. un-t, Tbilisi, 2004

[6] L. S. Chkhartishvili, “Kvaziklassicheskie otsenki postoyannoi reshetki i shiriny zapreschennoi zony kristalla: dvumernyi nitrid bora”, FTT, 46:11 (2004), 2056–2063

[7] L. Chkhartishvili, “Quasi-classical approach: Electronic structure of cubic boron nitride crystals”, J. Solid State Chem., 177:2 (2004), 395–399 | DOI