Generalized Squeezed States and Multimode Factorization Formula
Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 762-777.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the multimode generalization of the normally ordered factorization formula of squeezings. This formula allows us to establish relationships between various representations of squeezed states, to calculate partial traces, mean values, and variations. The main results are expressed in terms of the matrix representation of canonical transformations which is a convenient and numerically stable mathematical tool. Explicit representations are given for the inner product and the composition of generalized multimode squeezings. Explicitly solvable evolution problems are considered.
Keywords: squeezed state, normal ordered factorization, Schrödinger equation, canonical transformations.
@article{MZM_2012_92_5_a10,
     author = {A. M. Chebotarev and T. V. Tlyachev and A. A. Radionov},
     title = {Generalized {Squeezed} {States} and {Multimode} {Factorization} {Formula}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {762--777},
     publisher = {mathdoc},
     volume = {92},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a10/}
}
TY  - JOUR
AU  - A. M. Chebotarev
AU  - T. V. Tlyachev
AU  - A. A. Radionov
TI  - Generalized Squeezed States and Multimode Factorization Formula
JO  - Matematičeskie zametki
PY  - 2012
SP  - 762
EP  - 777
VL  - 92
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a10/
LA  - ru
ID  - MZM_2012_92_5_a10
ER  - 
%0 Journal Article
%A A. M. Chebotarev
%A T. V. Tlyachev
%A A. A. Radionov
%T Generalized Squeezed States and Multimode Factorization Formula
%J Matematičeskie zametki
%D 2012
%P 762-777
%V 92
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a10/
%G ru
%F MZM_2012_92_5_a10
A. M. Chebotarev; T. V. Tlyachev; A. A. Radionov. Generalized Squeezed States and Multimode Factorization Formula. Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 762-777. http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a10/

[1] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl

[2] R. P. Feynman, “An operator calculus having applications in quantum electrodynamics”, Phys. Rev. (2), 84:1 (1951), 108–128 | DOI | MR | Zbl

[3] D. A. Kirzhnits, Polevye metody teorii mnogikh chastits, Gosatomizdat, M., 1963 | MR

[4] H.-Y. Fan, “Operator ordering in quantum optics theory and the development of Dirac's symbolic method”, J. Opt. B: Quantum Semiclass. Opt., 5:4 (2003), R147–R163 | DOI | MR

[5] A. M. Chebotarev, T. V. Tlyachev, A. A. Radionov, “Szhatye sostoyaniya i ikh primenenie v zadachakh kvantovoi evolyutsii”, Matem. zametki, 89:4 (2011), 614–634 | MR | Zbl

[6] R. M. Wilcox, “Exponential operators and parameter differentiation in quantum physics”, J. Math. Phys., 8:4 (1967), 962–982 | DOI | MR | Zbl

[7] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl

[8] I. Najfeld, T. H. Havel, Derivatives of the matrix exponential and their computation, TR-33-94, Harvard University, Cambridge, Massachusetts, 1994

[9] C. W. Gardiner, P. Zoller, Quantum Noise. A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer Ser. Synergetics, Springer-Verlag, Berlin, 2004 | MR | Zbl

[10] C. M. Caves, B. L. Schumaker, “New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation”, Phys. Rev. A (3), 31:5 (1985), 3093–3111 | DOI | MR