Generalized Squeezed States and Multimode Factorization Formula
Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 762-777
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the multimode generalization of the normally ordered factorization formula of squeezings. This formula allows us to establish relationships between various representations of squeezed states, to calculate partial traces, mean values, and variations. The main results are expressed in terms of the matrix representation of canonical transformations which is a convenient and numerically stable mathematical tool. Explicit representations are given for the inner product and the composition of generalized multimode squeezings. Explicitly solvable evolution problems are considered.
Keywords:
squeezed state, normal ordered factorization, Schrödinger equation, canonical transformations.
@article{MZM_2012_92_5_a10,
author = {A. M. Chebotarev and T. V. Tlyachev and A. A. Radionov},
title = {Generalized {Squeezed} {States} and {Multimode} {Factorization} {Formula}},
journal = {Matemati\v{c}eskie zametki},
pages = {762--777},
publisher = {mathdoc},
volume = {92},
number = {5},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a10/}
}
TY - JOUR AU - A. M. Chebotarev AU - T. V. Tlyachev AU - A. A. Radionov TI - Generalized Squeezed States and Multimode Factorization Formula JO - Matematičeskie zametki PY - 2012 SP - 762 EP - 777 VL - 92 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a10/ LA - ru ID - MZM_2012_92_5_a10 ER -
A. M. Chebotarev; T. V. Tlyachev; A. A. Radionov. Generalized Squeezed States and Multimode Factorization Formula. Matematičeskie zametki, Tome 92 (2012) no. 5, pp. 762-777. http://geodesic.mathdoc.fr/item/MZM_2012_92_5_a10/