Asymptotics of the Spectrum and Quantum Averages near the Boundaries of Spectral Clusters for Perturbed Two-Dimensional Oscillators
Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 583-596

Voir la notice de l'article provenant de la source Math-Net.Ru

The eigenvalue problem for the perturbed resonant oscillator is considered. A method for constructing asymptotic solutions near the boundaries of spectral clusters using a new integral representation is proposed. The problem of calculating the averaged values of differential operators on solutions near the cluster boundaries is studied.
Keywords: spectral cluster, resonance, operator averaging method, coherent transform, WKB-approximation, turning point.
@article{MZM_2012_92_4_a8,
     author = {A. V. Pereskokov},
     title = {Asymptotics of the {Spectrum} and {Quantum} {Averages} near the {Boundaries} of {Spectral} {Clusters} for {Perturbed} {Two-Dimensional} {Oscillators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {583--596},
     publisher = {mathdoc},
     volume = {92},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a8/}
}
TY  - JOUR
AU  - A. V. Pereskokov
TI  - Asymptotics of the Spectrum and Quantum Averages near the Boundaries of Spectral Clusters for Perturbed Two-Dimensional Oscillators
JO  - Matematičeskie zametki
PY  - 2012
SP  - 583
EP  - 596
VL  - 92
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a8/
LA  - ru
ID  - MZM_2012_92_4_a8
ER  - 
%0 Journal Article
%A A. V. Pereskokov
%T Asymptotics of the Spectrum and Quantum Averages near the Boundaries of Spectral Clusters for Perturbed Two-Dimensional Oscillators
%J Matematičeskie zametki
%D 2012
%P 583-596
%V 92
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a8/
%G ru
%F MZM_2012_92_4_a8
A. V. Pereskokov. Asymptotics of the Spectrum and Quantum Averages near the Boundaries of Spectral Clusters for Perturbed Two-Dimensional Oscillators. Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 583-596. http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a8/