Blow-Up of the Solution of the Initial Boundary-Value Problem for the Generalized Boussinesq Equation with Nonlinear Boundary Condition
Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 567-582.

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial boundary-value problem for a nonlinear equation of pseudoparabolic type with nonlinear Neumann boundary condition is considered. We prove a local theorem on the existence of solutions. Using the method of energy inequalities, we obtain sufficient conditions for the blow-up of solutions in a finite time interval and establish upper and lower bounds for the blow-up time.
Mots-clés : Boussinesq equation, pseudoparabolic-type equation
Keywords: initial boundary-value problem, Neumann boundary condition, blow-up of solutions, homogenous isotropic semiconductor, Galerkin's method, dissipative processes in a semiconductor.
@article{MZM_2012_92_4_a7,
     author = {P. A. Makarov},
     title = {Blow-Up of the {Solution} of the {Initial} {Boundary-Value} {Problem} for the {Generalized} {Boussinesq} {Equation} with {Nonlinear} {Boundary} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {567--582},
     publisher = {mathdoc},
     volume = {92},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a7/}
}
TY  - JOUR
AU  - P. A. Makarov
TI  - Blow-Up of the Solution of the Initial Boundary-Value Problem for the Generalized Boussinesq Equation with Nonlinear Boundary Condition
JO  - Matematičeskie zametki
PY  - 2012
SP  - 567
EP  - 582
VL  - 92
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a7/
LA  - ru
ID  - MZM_2012_92_4_a7
ER  - 
%0 Journal Article
%A P. A. Makarov
%T Blow-Up of the Solution of the Initial Boundary-Value Problem for the Generalized Boussinesq Equation with Nonlinear Boundary Condition
%J Matematičeskie zametki
%D 2012
%P 567-582
%V 92
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a7/
%G ru
%F MZM_2012_92_4_a7
P. A. Makarov. Blow-Up of the Solution of the Initial Boundary-Value Problem for the Generalized Boussinesq Equation with Nonlinear Boundary Condition. Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 567-582. http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a7/

[1] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Nauka, M., 2007 | Zbl

[2] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 8. Elektrodinamika sploshnykh sred, Nauka, M., 1992 | MR | Zbl

[3] V. L. Bonch-Bruevich, S. G. Kalashnikov, Fizika poluprovodnikov, Nauka, M., 1990

[4] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Nelineinyi funktsionalnyi analiz i ego prilozheniya k uravneniyam v chastnykh proizvodnykh, Nauka, M., 2008

[5] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[6] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, T. 1, Mir, M., 1971 | MR | Zbl

[7] M. M. Postnikov, Lektsii po geometrii. Semestr 2. Lineinaya algebra, Nauka, M., 1986 | MR | Zbl

[8] I. G. Petrovskii, Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1970 | MR | Zbl

[9] V. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR | Zbl

[10] M. I. Dyachenko, P. L. Ulyanov, Mera i integral, Faktorial, M., 1998

[11] M. O. Korpusov, Razrushenie v neklassicheskikh volnovykh uravneniyakh, URSS, M., 2010