Comparison of the Convergence Rate of Pure Greedy and Orthogonal Greedy Algorithms
Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 528-532.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following two types of greedy algorithms are considered: the pure greedy algorithm (PGA) and the orthogonal greedy algorithm (OGA). From the standpoint of estimating the rate of convergence on the entire class $\mathscr A_1(\mathscr D)$, the orthogonal greedy algorithm is optimal and significantly exceeds the pure greedy algorithm. The main result in the present paper is the assertion that the situation can also be opposite for separate elements of the class $\mathscr A_1(\mathscr D)$ (and even of the class $\mathscr A_0(\mathscr D)$): the rate of convergence of the orthogonal greedy algorithm can be significantly lower than the rate of convergence of the pure greedy algorithm.
Keywords: pure greedy algorithm, orthogonal greedy algorithm, dictionary, rate of convergence, Hilbert space, the classes $\mathscr A_1(\mathscr D)$ and $\mathscr A_0(\mathscr D)$.
@article{MZM_2012_92_4_a3,
     author = {A. V. Dereventsov},
     title = {Comparison of the {Convergence} {Rate} of {Pure} {Greedy} and {Orthogonal} {Greedy} {Algorithms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {528--532},
     publisher = {mathdoc},
     volume = {92},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a3/}
}
TY  - JOUR
AU  - A. V. Dereventsov
TI  - Comparison of the Convergence Rate of Pure Greedy and Orthogonal Greedy Algorithms
JO  - Matematičeskie zametki
PY  - 2012
SP  - 528
EP  - 532
VL  - 92
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a3/
LA  - ru
ID  - MZM_2012_92_4_a3
ER  - 
%0 Journal Article
%A A. V. Dereventsov
%T Comparison of the Convergence Rate of Pure Greedy and Orthogonal Greedy Algorithms
%J Matematičeskie zametki
%D 2012
%P 528-532
%V 92
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a3/
%G ru
%F MZM_2012_92_4_a3
A. V. Dereventsov. Comparison of the Convergence Rate of Pure Greedy and Orthogonal Greedy Algorithms. Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 528-532. http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a3/

[1] J. H. Friedman, W. Stueuzle, “Projection pursuit regression”, J. Amer. Statist. Assoc., 76:376 (1981), 817–823 | MR

[2] L. K. Jones, “On a conjecture of Huber concerning the convergence of projection pursuit regression”, Ann. Statist., 15:2 (1987), 880–882 | DOI | MR | Zbl

[3] S. G. Mallat, Z. Zhang, “Matching pursuit with time-frequency dictionaries”, IEEE Trans. Signal Process., 41:12 (1993), 3397–3415 | DOI | Zbl

[4] R. A. DeVore, V. N. Temlyakov, “Some remarks on greedy algorithms”, Adv. Comput. Math., 5:2-3 (1996), 173–187 | DOI | MR | Zbl

[5] V. N. Temlyakov, “Weak greedy algorithms”, Adv. Comput. Math., 12:2-3 (2000), 213–227 | DOI | MR | Zbl

[6] V. N. Temlyakov, “Greedy algorithms in Banach spaces”, Adv. Comput. Math., 14:3 (2001), 277–292 | DOI | MR | Zbl

[7] V. V. Galatenko, E. D. Livshits, “Obobschennye priblizhennye slabye zhadnye algoritmy”, Matem. zametki, 78:2 (2005), 186–201 | MR | Zbl

[8] L. Rejtö, G. G. Walter, “Remarks on projection pursuit regression and density estimation”, Stochastic Anal. Appl., 10:2 (1992), 213–222 | DOI | MR | Zbl

[9] L. K. Jones, “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and network training”, Ann. Statist., 20:1 (1992), 608–613 | DOI | MR | Zbl

[10] V. V. Dubinin, Greedy Algorithms and Applications, Ph.D. Thesis, Univ. South Carolina, 1997 | MR

[11] S. B. Stechkin, “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, DAN SSSR, 102 (1955), 37–40 | MR | Zbl

[12] A. R. Barron, “Universal approximation bounds for superpositions of a sigmoidal function”, IEEE Trans. Inform. Theory, 39:3 (1993), 930–945 | DOI | MR | Zbl

[13] S. V. Konyagin, V. N. Temlyakov, “Rate of convergence of Pure Greedy Algorithm”, East J. Approx., 5:4 (1999), 493–499 | MR | Zbl

[14] A. V. Silnichenko, “O skorosti skhodimosti zhadnykh algoritmov”, Matem. zametki, 76:4 (2004), 628–632 | MR | Zbl

[15] E. D. Livshitz, V. N. Temlyakov, “Two lower estimates in greedy approximation”, Constr. Approx., 19:4 (2003), 509–523 | DOI | MR | Zbl

[16] E. D. Livshits, “O nizhnikh otsenkakh skorosti skhodimosti zhadnykh algoritmov”, Izv. RAN. Ser. matem., 73:6 (2009), 125–144 | MR | Zbl