Jackson--Stechkin Type Inequalities for Special Moduli of Continuity and Widths of Function Classes in the Space~$L_2$
Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 497-514.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sharp Jackson–Stechkin type inequalities for moduli of continuity of $k$th order $\Omega_k$ in which, instead of the shift operator $T_hf$, the Steklov operator $S_h(f)$ is used. Similar smoothness characteristic of functions were studied earlier in papers of Abilov, Abilova, Kokilashvili, and others. For classes of functions defined by these characteristics, we calculate the exact values of certain $n$-widths.
Keywords: Jackson–Stechkin type inequality, modulus of continuity, Steklov operator $S_h(f)$, $n$-width, Fourier series, Minkowski's inequality.
@article{MZM_2012_92_4_a1,
     author = {S. B. Vakarchuk and V. I. Zabutnaya},
     title = {Jackson--Stechkin {Type} {Inequalities} for {Special} {Moduli} of {Continuity} and {Widths} of {Function} {Classes} in the {Space~}$L_2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {497--514},
     publisher = {mathdoc},
     volume = {92},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a1/}
}
TY  - JOUR
AU  - S. B. Vakarchuk
AU  - V. I. Zabutnaya
TI  - Jackson--Stechkin Type Inequalities for Special Moduli of Continuity and Widths of Function Classes in the Space~$L_2$
JO  - Matematičeskie zametki
PY  - 2012
SP  - 497
EP  - 514
VL  - 92
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a1/
LA  - ru
ID  - MZM_2012_92_4_a1
ER  - 
%0 Journal Article
%A S. B. Vakarchuk
%A V. I. Zabutnaya
%T Jackson--Stechkin Type Inequalities for Special Moduli of Continuity and Widths of Function Classes in the Space~$L_2$
%J Matematičeskie zametki
%D 2012
%P 497-514
%V 92
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a1/
%G ru
%F MZM_2012_92_4_a1
S. B. Vakarchuk; V. I. Zabutnaya. Jackson--Stechkin Type Inequalities for Special Moduli of Continuity and Widths of Function Classes in the Space~$L_2$. Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 497-514. http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a1/

[1] V. V. Zhuk, “Nekotorye neravenstva mezhdu ravnomernymi nailuchshimi priblizheniyami periodicheskikh funktsii”, DAN SSSR, 201:2 (1971), 263–265 | MR | Zbl

[2] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer Ser. Comput. Math., 9, Springer-Verlag, New York, 1987 | MR | Zbl

[3] B. Sendov, V. Popov, Usrednennye moduli gladkosti, Mir, M., 1988 | MR | Zbl

[4] A. A. Abilov, “Otsenka poperechnika odnogo klassa funktsii v prostranstve $L_2$”, Matem. zametki, 52:1 (1992), 3–8 | MR | Zbl

[5] V. A. Abilov, F. V. Abilova, “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii summami Fure v prostranstve $L_2(2\pi)$”, Matem. zametki, 76:6 (2004), 803–811 | MR | Zbl

[6] S. B. Vakarchuk, V. I. Zabutnaya, “Nekotorye voprosy teorii approksimatsii $2\pi$-periodicheskikh funktsii v prostranstvakh $L_p$, $1\le p\le\infty$”, Problemi teoriï nablizhennya funktsii i sumizhni pitannya, Zb. prats In-tu matem. NAN Ukraïny, 1, no. 1, In-t matem. NAN Ukraïny, Kiïv, 2004, 25–41 | Zbl

[7] V. Kokilashvili, Y. E. Yildirir, “On the approximation in weighted Lebesgue spaces”, Proc. A. Razmadze Math. Inst., 143 (2007), 103–113 | MR | Zbl

[8] L. Ephremidze, V. Kokilashvili, Y. E. Yildirir, “On the inverse inequalities for trigonometric polynomial approximations in weighted Lorentz spaces”, Proc. A. Razmadze Math. Inst., 144 (2007), 132–136 | MR | Zbl

[9] S. B. Vakarchuk, “Tochnye konstanty v neravenstvakh tipa Dzheksona i tochnye znacheniya poperechnikov funktsionalnykh klassov iz $L_2$”, Matem. zametki, 78:5 (2005), 792–796 | MR | Zbl

[10] S. B. Vakarchuk, V. I. Zabutnaya, “Tochnoe neravenstvo tipa Dzheksona–Stechkina v $L_2$ i poperechniki funktsionalnykh klassov”, Matem. zametki, 86:3 (2009), 328–336 | MR | Zbl

[11] M. K. Potapov, “O primenenii odnogo operatora obobschennogo sdviga v teorii priblizhenii”, Vest. Mosk. un-ta. Ser. 1. Matem., mekh., 1998, no. 3, 38–48 | MR | Zbl

[12] M. K. Potapov, “O primenenii nesimmetrichnykh operatorov obobschennogo sdviga v teorii priblizhenii”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy V Kazanskoi mezhdunarodnoi letnei shkoly-konferentsii (Kazan, 27 iyunya–4 iyulya 2001 g.), Tr. matem. tsentra im. N. I. Lobachevskogo, 78, Kazan, 2001, 185–189

[13] A. Yu. Napedenina, “O sovpadenii klassov funktsii, opredelyaemykh operatorom obobschennogo sdviga ili poryadkom nailuchshego priblizheniya”, Vest. Mosk. un-ta. Ser. 1. Matem., mekh., 2004, no. 2, 29–33 | MR | Zbl

[14] K. V. Runovskii, “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstvakh $L_p$, $0

1$”, Matem. sb., 185:8 (1994), 81–102 | MR | Zbl

[15] E. A. Storozhenko, V. G. Krotov, P. Osvald, “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L^p$, $0

1$”, Matem. sb., 98:3 (1975), 395–415 | MR | Zbl

[16] S. B. Vakarchuk, V. I. Zabutna, “Widths of functional classes from $L_2$ and exact constants in Jackson type inequalities”, East. J. Approx., 14:4 (2008), 411–421 | MR | Zbl

[17] L. V. Taikov, “Neravenstva, soderzhaschie nailuchshie priblizheniya i modul nepreryvnosti funktsii iz $L_2$”, Matem. zametki, 20:3 (1976), 433–438 | MR | Zbl

[18] A. A. Ligun, “Nekotorye neravenstva mezhdu nailuchshimi priblizheniyami i modulyami nepreryvnosti v prostranstve $L_2$”, Matem. zametki, 24:6 (1978), 785–792 | MR | Zbl

[19] V. I. Ivanov, O. I. Smirnov, Konstanty Dzheksona i konstanty Yunga v prostranstvakh $L_p$, Tulskii gos. un-t, Tula, 1995

[20] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR | Zbl

[21] G. H. Hardy, G. Littlewood, G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1952 | MR | Zbl

[22] V. D. Rybasenko, I. D. Rybasenko, Elementarnye funktsii. Formuly, tablitsy, grafiki, Nauka, M., 1987 | Zbl

[23] N. P. Korneichuk, A. A. Ligun, V. G. Doronin, Approksimatsiya s ogranicheniyami, Naukova dumka, Kiev, 1982 | MR | Zbl