Simple Modules of Exceptional Groups with Normal Closures of Maximal Torus Orbits
Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 483-496.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be an exceptional simple algebraic group, and let $T$ be a maximal torus in $G$. In this paper, for every such $G$, we find all simple rational $G$-modules $V$ with the following property: for every vector $v\in V$, the closure of its $T$-orbit is a normal affine variety. To solve this problem, we use a combinatorial criterion of normality formulated in terms of weights of simple $G$-modules. This paper continues the works of the second author in which the same problem was solved for classical linear groups.
Keywords: variety, normality, irreducible representation, weight decomposition.
Mots-clés : exceptional group, maximal torus
@article{MZM_2012_92_4_a0,
     author = {I. I. Bogdanov and K. G. Kuyumzhiyan},
     title = {Simple {Modules} of {Exceptional} {Groups} with {Normal} {Closures} of {Maximal} {Torus} {Orbits}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--496},
     publisher = {mathdoc},
     volume = {92},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a0/}
}
TY  - JOUR
AU  - I. I. Bogdanov
AU  - K. G. Kuyumzhiyan
TI  - Simple Modules of Exceptional Groups with Normal Closures of Maximal Torus Orbits
JO  - Matematičeskie zametki
PY  - 2012
SP  - 483
EP  - 496
VL  - 92
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a0/
LA  - ru
ID  - MZM_2012_92_4_a0
ER  - 
%0 Journal Article
%A I. I. Bogdanov
%A K. G. Kuyumzhiyan
%T Simple Modules of Exceptional Groups with Normal Closures of Maximal Torus Orbits
%J Matematičeskie zametki
%D 2012
%P 483-496
%V 92
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a0/
%G ru
%F MZM_2012_92_4_a0
I. I. Bogdanov; K. G. Kuyumzhiyan. Simple Modules of Exceptional Groups with Normal Closures of Maximal Torus Orbits. Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 483-496. http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a0/

[1] J. Morand, “Closures of torus orbits in adjoint representations of semisimple groups”, C. R. Acad. Sci. Paris Sér. I Math., 328:3 (1999), 197–202 | DOI | MR | Zbl

[2] B. Sturmfels, “Equations defining toric varieties”, Algebraic Geometry (Santa Cruz, CA, USA, July 9–29, 1995), Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997, 437–449 | MR | Zbl

[3] B. Sturmfels, Gröbner Bases and Convex Polytopes, Univ. Lecture Ser., 8, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[4] K. Kuyumzhiyan, “Simple $\mathrm{SL}(n)$-modules with normal closures of maximal torus orbits”, J. Algebraic Combin., 30:4 (2009), 515–538 | DOI | MR | Zbl

[5] K. G. Kuyumzhiyan, “Prostye moduli klassicheskikh lineinykh grupp s normalnymi zamykaniyami orbit maksimalnogo tora”, Sib. matem. zhurn. (to appear)

[6] N. Burbaki, Gruppy i algebry Li. Gl. 4–6. Gruppy Kokstera i sistemy Titsa. Gruppy, porozhdennye otrazheniyami. Sistemy kornei, Elementy matematiki, Mir, M., 1972 | MR | Zbl

[7] Dzh. Khamfris, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003 | MR | Zbl

[8] G. Kempf, F. Knudsen, D. Mumford, B. Saint-Donat, Toroidal Embeddings. I, Lecture Notes in Math., 339, Springer-Verlag, Berlin, 1973 | DOI | MR | Zbl

[9] W. Fulton, J. Harris, Representation Theory. A First Course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991 | MR | Zbl

[10] N. Burbaki, Gruppy i algebry. Gl. 7–8. Podalgebry Kartana, regulyarnye elementy, rasscheplyaemye poluprostye algebry Li, Elementy matematiki, Mir, M., 1978 | MR | Zbl