Simple Modules of Exceptional Groups with Normal Closures of Maximal Torus Orbits
Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 483-496

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be an exceptional simple algebraic group, and let $T$ be a maximal torus in $G$. In this paper, for every such $G$, we find all simple rational $G$-modules $V$ with the following property: for every vector $v\in V$, the closure of its $T$-orbit is a normal affine variety. To solve this problem, we use a combinatorial criterion of normality formulated in terms of weights of simple $G$-modules. This paper continues the works of the second author in which the same problem was solved for classical linear groups.
Keywords: variety, normality, irreducible representation, weight decomposition.
Mots-clés : exceptional group, maximal torus
@article{MZM_2012_92_4_a0,
     author = {I. I. Bogdanov and K. G. Kuyumzhiyan},
     title = {Simple {Modules} of {Exceptional} {Groups} with {Normal} {Closures} of {Maximal} {Torus} {Orbits}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--496},
     publisher = {mathdoc},
     volume = {92},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a0/}
}
TY  - JOUR
AU  - I. I. Bogdanov
AU  - K. G. Kuyumzhiyan
TI  - Simple Modules of Exceptional Groups with Normal Closures of Maximal Torus Orbits
JO  - Matematičeskie zametki
PY  - 2012
SP  - 483
EP  - 496
VL  - 92
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a0/
LA  - ru
ID  - MZM_2012_92_4_a0
ER  - 
%0 Journal Article
%A I. I. Bogdanov
%A K. G. Kuyumzhiyan
%T Simple Modules of Exceptional Groups with Normal Closures of Maximal Torus Orbits
%J Matematičeskie zametki
%D 2012
%P 483-496
%V 92
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a0/
%G ru
%F MZM_2012_92_4_a0
I. I. Bogdanov; K. G. Kuyumzhiyan. Simple Modules of Exceptional Groups with Normal Closures of Maximal Torus Orbits. Matematičeskie zametki, Tome 92 (2012) no. 4, pp. 483-496. http://geodesic.mathdoc.fr/item/MZM_2012_92_4_a0/