A Generalization of the Set Averaging Theorem
Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 410-416
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the possibility of generalizing the averaging theorem from the case of sets from $n$-dimensional Euclidean space to the case of sets from Banach spaces. The result is a cornerstone for constructing the theory of the Riemann integral for non-convex-valued multivalued mappings and for proving the convexity of this multivalued integral. We obtain a generalization of the averaging theorem to the case of sets from uniformly smooth Banach spaces as well as some corollaries.
Keywords:
set averaging theorem, $n$-dimensional Euclidean space, Banach space, Riemann integral, non-convex-valued multivalued mapping, convex compact set, Hausdorff metric.
@article{MZM_2012_92_3_a8,
author = {G. Ivanov and E. S. Polovinkin},
title = {A {Generalization} of the {Set} {Averaging} {Theorem}},
journal = {Matemati\v{c}eskie zametki},
pages = {410--416},
year = {2012},
volume = {92},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a8/}
}
G. Ivanov; E. S. Polovinkin. A Generalization of the Set Averaging Theorem. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 410-416. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a8/
[1] E. S. Polovinkin, “Riemannian integral of set-valued function”, Optimization Techniques, IFIP Technical Conference, Lecture Notes in Comput. Sci., 27, 1975, 405–410 | DOI | Zbl
[2] E. S. Polovinkin, “Ob integrirovanii mnogoznachnykh otobrazhenii”, DAN SSSR, 271:5 (1983), 1069–1074 | MR | Zbl
[3] E. S. Polovinkin, Elementy teorii mnogoznachnykh otobrazhenii, Izd-vo MFTI, M., 1982
[4] J. Diestel, Geometry of Banach Spaces. Selected Topics, Lecture Notes in Math., 485, Springer-Verlag, Berlin, 1975 ; Dzh. Distel, Geometriya banakhovykh prostranstv. Izbrannye glavy, Vischa shkola, Kiev, 1980 | MR | Zbl | MR | Zbl