A Generalization of the Set Averaging Theorem
Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 410-416.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the possibility of generalizing the averaging theorem from the case of sets from $n$-dimensional Euclidean space to the case of sets from Banach spaces. The result is a cornerstone for constructing the theory of the Riemann integral for non-convex-valued multivalued mappings and for proving the convexity of this multivalued integral. We obtain a generalization of the averaging theorem to the case of sets from uniformly smooth Banach spaces as well as some corollaries.
Keywords: set averaging theorem, $n$-dimensional Euclidean space, Banach space, Riemann integral, non-convex-valued multivalued mapping, convex compact set, Hausdorff metric.
@article{MZM_2012_92_3_a8,
     author = {G. Ivanov and E. S. Polovinkin},
     title = {A {Generalization} of the {Set} {Averaging} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {410--416},
     publisher = {mathdoc},
     volume = {92},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a8/}
}
TY  - JOUR
AU  - G. Ivanov
AU  - E. S. Polovinkin
TI  - A Generalization of the Set Averaging Theorem
JO  - Matematičeskie zametki
PY  - 2012
SP  - 410
EP  - 416
VL  - 92
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a8/
LA  - ru
ID  - MZM_2012_92_3_a8
ER  - 
%0 Journal Article
%A G. Ivanov
%A E. S. Polovinkin
%T A Generalization of the Set Averaging Theorem
%J Matematičeskie zametki
%D 2012
%P 410-416
%V 92
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a8/
%G ru
%F MZM_2012_92_3_a8
G. Ivanov; E. S. Polovinkin. A Generalization of the Set Averaging Theorem. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 410-416. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a8/

[1] E. S. Polovinkin, “Riemannian integral of set-valued function”, Optimization Techniques, IFIP Technical Conference, Lecture Notes in Comput. Sci., 27, 1975, 405–410 | DOI | Zbl

[2] E. S. Polovinkin, “Ob integrirovanii mnogoznachnykh otobrazhenii”, DAN SSSR, 271:5 (1983), 1069–1074 | MR | Zbl

[3] E. S. Polovinkin, Elementy teorii mnogoznachnykh otobrazhenii, Izd-vo MFTI, M., 1982

[4] J. Diestel, Geometry of Banach Spaces. Selected Topics, Lecture Notes in Math., 485, Springer-Verlag, Berlin, 1975 ; Dzh. Distel, Geometriya banakhovykh prostranstv. Izbrannye glavy, Vischa shkola, Kiev, 1980 | MR | Zbl | MR | Zbl