Approximate Solution for a Class of Two-Dimensional Nonlinear Singular Integral Equations by the Contraction Mapping Method
Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 395-400.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain solutions for a class of two-dimensional nonlinear singular integral equations with Hilbert kernel using the contraction mapping method and find the rate of convergence of successive approximations to the exact solution.
Keywords: nonlinear singular integral equation, contraction mapping method, singular integral, Banach space.
Mots-clés : Hilbert kernel
@article{MZM_2012_92_3_a6,
     author = {N. F. Gasymova},
     title = {Approximate {Solution} for a {Class} of {Two-Dimensional} {Nonlinear} {Singular} {Integral} {Equations} by the {Contraction} {Mapping} {Method}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {395--400},
     publisher = {mathdoc},
     volume = {92},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a6/}
}
TY  - JOUR
AU  - N. F. Gasymova
TI  - Approximate Solution for a Class of Two-Dimensional Nonlinear Singular Integral Equations by the Contraction Mapping Method
JO  - Matematičeskie zametki
PY  - 2012
SP  - 395
EP  - 400
VL  - 92
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a6/
LA  - ru
ID  - MZM_2012_92_3_a6
ER  - 
%0 Journal Article
%A N. F. Gasymova
%T Approximate Solution for a Class of Two-Dimensional Nonlinear Singular Integral Equations by the Contraction Mapping Method
%J Matematičeskie zametki
%D 2012
%P 395-400
%V 92
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a6/
%G ru
%F MZM_2012_92_3_a6
N. F. Gasymova. Approximate Solution for a Class of Two-Dimensional Nonlinear Singular Integral Equations by the Contraction Mapping Method. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 395-400. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a6/

[1] V. A. Kakichev, “Integral Shvartsa i formuly Gilberta dlya analiticheskikh funktsii mnogikh kompleksnykh peremennykh”, Izv. vuzov. Matem., 1959, no. 2, 80–93 | MR | Zbl

[2] B. G. Gabdulkhaev, “Priblizhennoe reshenie mnogomernykh singulyarnykh integralnykh uravnenii, II”, Izv. vuzov. Matem., 1976, no. 1, 30–41 | MR | Zbl

[3] B. I. Musaev, V. V. Salaev, “O sopryazhennykh funktsiyakh mnogikh peremennykh, I”, Uchen. zap. Azerbaidzhan. gos. un-ta. Ser. Fiz.-matem. nauk, 1978, no. 4, 5–18 | MR

[4] A. G. Dzhvarsheishvili, “Ob odnom neravenstve A. Zigmunda dlya funktsii dvukh peremennykh”, Soobsch. AN GruzSSR, 15:9 (1954), 561–568 | Zbl

[5] F. A. Abdullaev, “O nekotorykh multiplikativnykh neravenstvakh dlya funktsii dvukh peremennykh”, Azәrbaycan Respublikası“Tәhsil” Cәmiyyәti. “Bilgi” dәrgisi. Fizika, Riyaziyyat, Yer elmlәri, 2004, no. 2, 56–60

[6] N. F. Gasymova, “Ob odnom nelineinom singulyarnom integralnom operatore s yadrom Gilberta”, Baki Universitetinin Xәbәrlәri. Fizika-riyaziyyat elmleri seriyasi, 2005, no. 4, 56–63

[7] V. P. Ilin, “Nekotorye neravenstva v funktsionalnykh prostranstvakh i ikh primenenie k issledovaniyu skhodimosti variatsionnykh protsessov”, Raboty po priblizhennomu analizu, Tr. MIAN SSSR, 53, Izd-vo AN SSSR, M.–L., 1959, 64–127 | MR | Zbl