Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_92_3_a5, author = {A. I. Garber}, title = {Belt {Distance} {Between} {Facets} of {Space-Filling} {Zonotopes}}, journal = {Matemati\v{c}eskie zametki}, pages = {381--394}, publisher = {mathdoc}, volume = {92}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a5/} }
A. I. Garber. Belt Distance Between Facets of Space-Filling Zonotopes. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 381-394. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a5/
[1] G. Voronoï, “Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les paralléloèdres primitifs”, J. für Math., 136 (1909), 67–178 | Zbl
[2] H. Minkowski, “Allgemeine Lehrsätze über die convexen Polyeder”, Gött. Nachr., 1897, 198–219 | Zbl
[3] P. McMullen, “Convex bodies which tile space by translation”, Mathematika, 27:1 (1980), 113–121 | DOI | MR | Zbl
[4] B. A. Venkov, “Ob odnom klasse evklidovykh mnogogrannikov”, Vest. Leningradsk. un-ta. Ser. matem., fiz., khim., 9:2 (1954), 11–31 | MR
[5] O.K. Zhitomirskii, “Verschärfung eines Satzes von Voronoi”, Zh. Leningradskogo. matem. ob-va, 2 (1929), 131–151
[6] R. M. Erdahl, “Zonotopes, dicings, and Voronoi's conjecture on parallelohedra”, European J. Combin., 20:6 (1999), 527–549 | DOI | MR | Zbl
[7] A. Ordine, Proof of the Voronoi Conjecture on Parallelotopes in a New Special Case, Ph.D. Thesis, Queen's University, Ontario, 2005 | MR
[8] B. Delaunay, “Sur la partition régulière de l'espace à 4 dimensions. Première partie”, Izvestiya Akademii nauk SSSR. VII seriya. Otdelenie fiziko-matematicheskikh nauk, 1929, no. 1, 79–110 | Zbl
[9] M. I. Shtogrin, “Pravilnye razbieniya Dirikhle–Voronogo dlya vtoroi triklinnoi gruppy”, Tr. MIAN SSSR, 123, 1973, 3–128 | MR | Zbl
[10] S. S. Ryshkov, E. P. Baranovskii, “$C$-tipy $n$-mernykh reshetok i pyatimernye primitivnye paralleloedry (s prilozheniem k teorii pokrytii)”, Tr. MIAN SSSR, 137, 1976, 3–131 | MR | Zbl
[11] P. Engel, “The contraction types of parallelohedra in $\mathbb E^5$”, Acta Cryst. Sect. A, 56:5 (2000), 491–496 | DOI | MR | Zbl
[12] G. C. Shephard, “Space-filling zonotopes”, Mathematika, 21 (1974), 261–269 | DOI | MR | Zbl
[13] P. McMullen, “Space tiling zonotopes”, Mathematika, 22:2 (1975), 202–211 | DOI | MR | Zbl
[14] G. M. Ziegler, Lectures on Polytopes, Grad. Texts in Math., 152, Springer-Verlag, New York, 1995 | MR | Zbl
[15] A. P. Poyarkov, A. I. Garber, “O perestanovochnykh mnogogrannikakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2006, no. 2, 3–8 | MR | Zbl
[16] E. S. Fedorov, Nachala ucheniya o figurakh, Tip. Imperatorskoi AN, Sankt-Peterburg, 1885
[17] H. S. M. Coxeter, Regular Polytopes, Dover Publ., New York, 1973 | MR | Zbl
[18] A. N. Magazinov, Lichnaya beseda, 2010
[19] B. A. Venkov, “O proektirovanii paralleloedrov”, Matem. sb., 49(91):2 (1959), 207–224 | Zbl