Belt Distance Between Facets of Space-Filling Zonotopes
Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 381-394

Voir la notice de l'article provenant de la source Math-Net.Ru

To every $d$-dimensional polytope $P$ with centrally symmetric facets, one can assign a “subway map” such that every line of this “subway” contains exactly the facets parallel to one of the ridges of $P$. The belt diameter of $P$ is the maximum number of subway lines one needs to use to get from one facet to another. We prove that the belt diameter of a $d$-dimensional space-filling zonotope does not exceed $\lceil\log_2(4/5)d\rceil$.
Keywords: zonotope, polytope, belt diameter, tiling, Dirichlet–Voronoi polytope, canonical scaling of a tiling.
Mots-clés : parallelohedron, Voronoi's conjecture
@article{MZM_2012_92_3_a5,
     author = {A. I. Garber},
     title = {Belt {Distance} {Between} {Facets} of {Space-Filling} {Zonotopes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {381--394},
     publisher = {mathdoc},
     volume = {92},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a5/}
}
TY  - JOUR
AU  - A. I. Garber
TI  - Belt Distance Between Facets of Space-Filling Zonotopes
JO  - Matematičeskie zametki
PY  - 2012
SP  - 381
EP  - 394
VL  - 92
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a5/
LA  - ru
ID  - MZM_2012_92_3_a5
ER  - 
%0 Journal Article
%A A. I. Garber
%T Belt Distance Between Facets of Space-Filling Zonotopes
%J Matematičeskie zametki
%D 2012
%P 381-394
%V 92
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a5/
%G ru
%F MZM_2012_92_3_a5
A. I. Garber. Belt Distance Between Facets of Space-Filling Zonotopes. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 381-394. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a5/