A Multidimensional Generalization of Lagrange's Theorem on Continued Fractions
Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 343-360
Cet article a éte moissonné depuis la source Math-Net.Ru
A multidimensional geometric analog of Lagrange's theorem on continued fractions is proposed. The multidimensional generalization of the geometric interpretation of a continued fraction uses the notion of a Klein polyhedron, that is, the convex hull of the set of nonzero points in the lattice $\mathbb Z^n$ contained inside some $n$-dimensional simplicial cone with vertex at the origin. A criterion for the semiperiodicity of the boundary of a Klein polyhedron is obtained, and a statement about the nonempty intersection of the boundaries of the Klein polyhedra corresponding to a given simplicial cone and to a certain modification of this cone is proved.
Keywords:
Lagrange's theorem on continued fractions, Klein polyhedron, simplicial cone, hyperbolic operator, eigenbasis, integer lattice, semiperiodic boundary.
Mots-clés : sail, eigencone
Mots-clés : sail, eigencone
@article{MZM_2012_92_3_a2,
author = {A. V. Bykovskaya},
title = {A {Multidimensional} {Generalization} of {Lagrange's} {Theorem} on {Continued} {Fractions}},
journal = {Matemati\v{c}eskie zametki},
pages = {343--360},
year = {2012},
volume = {92},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a2/}
}
A. V. Bykovskaya. A Multidimensional Generalization of Lagrange's Theorem on Continued Fractions. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 343-360. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a2/
[1] E. I. Korkina, “Dvumernye tsepnye drobi. Samye prostye primery”, Osobennosti gladkikh otobrazhenii s dopolnitelnymi strukturami, Sbornik statei, Tr. MIAN, 209, Nauka, M., 1995, 143–166 | MR | Zbl
[2] O. N. German, E. L. Lakshtanov, “O mnogomernom obobschenii teoremy Lagranzha dlya tsepnykh drobei”, Izv. RAN. Ser. matem., 72:1 (2008), 51–66 | MR | Zbl
[3] J.-O. Moussafir, “Convex hulls of integral points”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. V, Zap. nauchn. sem. POMI, 266, POMI, SPb., 2000, 188–217 | MR | Zbl
[4] H. Tsuchihashi, “Higher-dimensional analogues of periodic continued fractions and cusp singularities”, Tôhoku Math. J. (2), 35:4 (1983), 607–639 | DOI | MR | Zbl