Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_92_3_a2, author = {A. V. Bykovskaya}, title = {A {Multidimensional} {Generalization} of {Lagrange's} {Theorem} on {Continued} {Fractions}}, journal = {Matemati\v{c}eskie zametki}, pages = {343--360}, publisher = {mathdoc}, volume = {92}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a2/} }
A. V. Bykovskaya. A Multidimensional Generalization of Lagrange's Theorem on Continued Fractions. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 343-360. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a2/
[1] E. I. Korkina, “Dvumernye tsepnye drobi. Samye prostye primery”, Osobennosti gladkikh otobrazhenii s dopolnitelnymi strukturami, Sbornik statei, Tr. MIAN, 209, Nauka, M., 1995, 143–166 | MR | Zbl
[2] O. N. German, E. L. Lakshtanov, “O mnogomernom obobschenii teoremy Lagranzha dlya tsepnykh drobei”, Izv. RAN. Ser. matem., 72:1 (2008), 51–66 | MR | Zbl
[3] J.-O. Moussafir, “Convex hulls of integral points”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. V, Zap. nauchn. sem. POMI, 266, POMI, SPb., 2000, 188–217 | MR | Zbl
[4] H. Tsuchihashi, “Higher-dimensional analogues of periodic continued fractions and cusp singularities”, Tôhoku Math. J. (2), 35:4 (1983), 607–639 | DOI | MR | Zbl