On Finite Groups with $p$-Decomposable Cofactors of Subgroups
Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 440-446.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for a finite group with $p$-decomposable cofactors of the maximal subgroups, the quotient group by the Fitting subgroup is $p$-decomposable. This implies that every group all of whose maximal subgroups have nilpotent cofactors is metanilpotent.
Keywords: finite group, cofactor of a subgroup, Fitting subgroup, $p$-decomposable subgroup, metanilpotent group.
@article{MZM_2012_92_3_a11,
     author = {I. V. Lemeshev},
     title = {On {Finite} {Groups} with $p${-Decomposable} {Cofactors} of {Subgroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {440--446},
     publisher = {mathdoc},
     volume = {92},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a11/}
}
TY  - JOUR
AU  - I. V. Lemeshev
TI  - On Finite Groups with $p$-Decomposable Cofactors of Subgroups
JO  - Matematičeskie zametki
PY  - 2012
SP  - 440
EP  - 446
VL  - 92
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a11/
LA  - ru
ID  - MZM_2012_92_3_a11
ER  - 
%0 Journal Article
%A I. V. Lemeshev
%T On Finite Groups with $p$-Decomposable Cofactors of Subgroups
%J Matematičeskie zametki
%D 2012
%P 440-446
%V 92
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a11/
%G ru
%F MZM_2012_92_3_a11
I. V. Lemeshev. On Finite Groups with $p$-Decomposable Cofactors of Subgroups. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 440-446. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a11/

[1] V. S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006

[2] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl

[3] Ya. G. Berkovich, “Konechnye gruppy s bolshimi yadrami maksimalnykh podgrupp”, Sib. matem. zhurn., 9:2 (1968), 243–248 | MR | Zbl

[4] S. M. Evtukhova, V. S. Monakhov, “O konechnykh gruppakh so sverkhrazreshimymi kofaktorami podgrupp”, Izv. NAN Belarusi. Ser. fiz.-matem. nauk, 2008, no. 4, 53–57 | MR

[5] J. D. Dixon, J. Poland, A. H. Rhemtulla, “A generalization of Hamiltonian and nilpotent groups”, Math. Z., 112 (1969), 335–339 | MR | Zbl

[6] S. A. Rusakov, “O gruppakh s maksimalnymi podgruppami dannogo vida”, Izv. AN BSSR. Ser. fiz.-matem. nauk, no. 1, 1968, 49–53 | MR | Zbl

[7] B. Huppert, Endliche Gruppen. I, Die Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin, 1967 | MR | Zbl