Cohomology of $\mathfrak {osp}(2|2)$ Acting on Spaces of Linear Differential Operators on the Superspace $\mathbb{R}^{1|2}$
Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 331-342.

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute the first differential cohomology of the orthosymplectic Lie superalgebra $\mathfrak{osp}(2|2)$ with coefficients in the superspace of linear differential operators acting on the space of weighted densities on the $(1,2)$-dimensional real superspace. We also compute the same, but $\mathfrak{osp}(1|2)$-relative, cohomology. We explicitly give $1$-cocycles spanning these cohomologies. This work is the simplest generalization of a result from [1].
Keywords: differential cohomology, orthosymplectic Lie superalgebra, differential operator, superspace, Lie algebra of contact vector fields.
@article{MZM_2012_92_3_a1,
     author = {N. Ben Fraj and M. Boujelbene},
     title = {Cohomology of $\mathfrak {osp}(2|2)$ {Acting} on {Spaces} of {Linear} {Differential} {Operators} on the {Superspace} $\mathbb{R}^{1|2}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {331--342},
     publisher = {mathdoc},
     volume = {92},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a1/}
}
TY  - JOUR
AU  - N. Ben Fraj
AU  - M. Boujelbene
TI  - Cohomology of $\mathfrak {osp}(2|2)$ Acting on Spaces of Linear Differential Operators on the Superspace $\mathbb{R}^{1|2}$
JO  - Matematičeskie zametki
PY  - 2012
SP  - 331
EP  - 342
VL  - 92
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a1/
LA  - ru
ID  - MZM_2012_92_3_a1
ER  - 
%0 Journal Article
%A N. Ben Fraj
%A M. Boujelbene
%T Cohomology of $\mathfrak {osp}(2|2)$ Acting on Spaces of Linear Differential Operators on the Superspace $\mathbb{R}^{1|2}$
%J Matematičeskie zametki
%D 2012
%P 331-342
%V 92
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a1/
%G ru
%F MZM_2012_92_3_a1
N. Ben Fraj; M. Boujelbene. Cohomology of $\mathfrak {osp}(2|2)$ Acting on Spaces of Linear Differential Operators on the Superspace $\mathbb{R}^{1|2}$. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 331-342. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a1/

[1] I. Basdouri, M. Ben Ammar, “Cohomology of $\mathfrak{osp}(1|2)$ acting on linear differential operators on the supercircle $S^{1|1}$”, Lett. Math. Phys., 81:3 (2007), 239–251 | DOI | MR | Zbl

[2] P. B. A. Lecomte, “On the cohomology of $\mathfrak{sl}(m+1;\mathbb{R})$ acting on differential operators and $\mathfrak{sl}(m+1;\mathbb{R})$-equivariant symbols”, Indag. Math. (N.S.), 11:1 (2000), 95–114 | DOI | MR | Zbl

[3] B. Agrebaoui, F. Ammar, P. Lecomte, V. Ovsienko, “Multi-parameter deformations of the module of symbols of differential operators”, Int. Math. Res. Not., 16 (2002), 847–869 | DOI | MR | Zbl

[4] B. Agrebaoui, M. Ben Ammar, N. Ben Fraj, V. Ovsienko, “Deformations of modules of differential forms”, J. Nonlinear Math. Phys., 10:2 (2003), 148–156 | DOI | MR | Zbl

[5] M. Ben Ammar, M. Boujelbene, “$\mathfrak{sl}(2)$-Trivial Deformations of $\operatorname{Vect}_{\mathrm{Pol}}(\mathbb R)$-Modules of Symbols”, SIGMA, 4 (2008), 065, 19 pp. | DOI | MR | Zbl

[6] A. Nijenhuis, R. W. Richardson, Jr., “Deformations of homomorphisms of Lie groups and Lie algebras”, Bull. Amer. Math. Soc., 73 (1967), 175–179 | DOI | MR | Zbl

[7] H. Gargoubi, N. Mellouli, V. Ovsienko, “Differential operators on supercircle: Conformally equivariant quantization and symbol calculus”, Lett. Math. Phys., 79:1 (2007), 51–65 | DOI | MR | Zbl

[8] B. L. Feigin, D. B. Fuks, “Kogomologii grupp i algebr Li”, Gruppy Li i algebry Li – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 21, VINITI, M., 1988, 121–209 | MR | Zbl

[9] P. Grozman, D. Leites, I. Shchepochkina, “Lie superalgebras of string theories”, Acta Math. Vietnam., 26:1 (2001), 27–63, arXiv: hep-th/9702120 | MR | Zbl

[10] C. H. Conley, “Conformal symbols and the action of contact vector fields over the superline”, J. Reine Angew. Math., 633 (2009), 115–163, arXiv: math.RT/0712.1780v2 | MR | Zbl

[11] N. Ben Fraj, “Cohomology of $\mathcal{K}(2)$ acting on linear differential operators on the superspace $\mathbb{R}^{1|2}$”, Lett. Math. Phys., 86:2-3 (2008), 159–175 | DOI | MR | Zbl

[12] I. Basdouri, M. Ben Ammar, N. Ben Fraj, M. Boujelben, K. Kammoun, “Cohomology of the Lie superalgebra of contact vector fields on $\mathbb{K}^{1|1} $ and deformations of the superspace of symbols”, J. Nonlinear Math. Phys., 16:4 (2009), 373–409 | MR | Zbl