Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_92_3_a1, author = {N. Ben Fraj and M. Boujelbene}, title = {Cohomology of $\mathfrak {osp}(2|2)$ {Acting} on {Spaces} of {Linear} {Differential} {Operators} on the {Superspace} $\mathbb{R}^{1|2}$}, journal = {Matemati\v{c}eskie zametki}, pages = {331--342}, publisher = {mathdoc}, volume = {92}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a1/} }
TY - JOUR AU - N. Ben Fraj AU - M. Boujelbene TI - Cohomology of $\mathfrak {osp}(2|2)$ Acting on Spaces of Linear Differential Operators on the Superspace $\mathbb{R}^{1|2}$ JO - Matematičeskie zametki PY - 2012 SP - 331 EP - 342 VL - 92 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a1/ LA - ru ID - MZM_2012_92_3_a1 ER -
%0 Journal Article %A N. Ben Fraj %A M. Boujelbene %T Cohomology of $\mathfrak {osp}(2|2)$ Acting on Spaces of Linear Differential Operators on the Superspace $\mathbb{R}^{1|2}$ %J Matematičeskie zametki %D 2012 %P 331-342 %V 92 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a1/ %G ru %F MZM_2012_92_3_a1
N. Ben Fraj; M. Boujelbene. Cohomology of $\mathfrak {osp}(2|2)$ Acting on Spaces of Linear Differential Operators on the Superspace $\mathbb{R}^{1|2}$. Matematičeskie zametki, Tome 92 (2012) no. 3, pp. 331-342. http://geodesic.mathdoc.fr/item/MZM_2012_92_3_a1/
[1] I. Basdouri, M. Ben Ammar, “Cohomology of $\mathfrak{osp}(1|2)$ acting on linear differential operators on the supercircle $S^{1|1}$”, Lett. Math. Phys., 81:3 (2007), 239–251 | DOI | MR | Zbl
[2] P. B. A. Lecomte, “On the cohomology of $\mathfrak{sl}(m+1;\mathbb{R})$ acting on differential operators and $\mathfrak{sl}(m+1;\mathbb{R})$-equivariant symbols”, Indag. Math. (N.S.), 11:1 (2000), 95–114 | DOI | MR | Zbl
[3] B. Agrebaoui, F. Ammar, P. Lecomte, V. Ovsienko, “Multi-parameter deformations of the module of symbols of differential operators”, Int. Math. Res. Not., 16 (2002), 847–869 | DOI | MR | Zbl
[4] B. Agrebaoui, M. Ben Ammar, N. Ben Fraj, V. Ovsienko, “Deformations of modules of differential forms”, J. Nonlinear Math. Phys., 10:2 (2003), 148–156 | DOI | MR | Zbl
[5] M. Ben Ammar, M. Boujelbene, “$\mathfrak{sl}(2)$-Trivial Deformations of $\operatorname{Vect}_{\mathrm{Pol}}(\mathbb R)$-Modules of Symbols”, SIGMA, 4 (2008), 065, 19 pp. | DOI | MR | Zbl
[6] A. Nijenhuis, R. W. Richardson, Jr., “Deformations of homomorphisms of Lie groups and Lie algebras”, Bull. Amer. Math. Soc., 73 (1967), 175–179 | DOI | MR | Zbl
[7] H. Gargoubi, N. Mellouli, V. Ovsienko, “Differential operators on supercircle: Conformally equivariant quantization and symbol calculus”, Lett. Math. Phys., 79:1 (2007), 51–65 | DOI | MR | Zbl
[8] B. L. Feigin, D. B. Fuks, “Kogomologii grupp i algebr Li”, Gruppy Li i algebry Li – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 21, VINITI, M., 1988, 121–209 | MR | Zbl
[9] P. Grozman, D. Leites, I. Shchepochkina, “Lie superalgebras of string theories”, Acta Math. Vietnam., 26:1 (2001), 27–63, arXiv: hep-th/9702120 | MR | Zbl
[10] C. H. Conley, “Conformal symbols and the action of contact vector fields over the superline”, J. Reine Angew. Math., 633 (2009), 115–163, arXiv: math.RT/0712.1780v2 | MR | Zbl
[11] N. Ben Fraj, “Cohomology of $\mathcal{K}(2)$ acting on linear differential operators on the superspace $\mathbb{R}^{1|2}$”, Lett. Math. Phys., 86:2-3 (2008), 159–175 | DOI | MR | Zbl
[12] I. Basdouri, M. Ben Ammar, N. Ben Fraj, M. Boujelben, K. Kammoun, “Cohomology of the Lie superalgebra of contact vector fields on $\mathbb{K}^{1|1} $ and deformations of the superspace of symbols”, J. Nonlinear Math. Phys., 16:4 (2009), 373–409 | MR | Zbl