Strong Maximum Principle for an~Elliptic Operator on a~Stratified Set
Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 276-290
Voir la notice de l'article provenant de la source Math-Net.Ru
We derive a necessary condition for an extremum for functions on stratified sets in terms of integrals of the normal derivative over spheres and use this condition to prove the strong maximum principle for the divergence operator on a stratified set.
Keywords:
stratified set, extremum, necessary condition, divergence operator, strong maximum principle.
@article{MZM_2012_92_2_a8,
author = {S. N. Oshchepkova and O. M. Penkin and D. Savasteev},
title = {Strong {Maximum} {Principle} for {an~Elliptic} {Operator} on {a~Stratified} {Set}},
journal = {Matemati\v{c}eskie zametki},
pages = {276--290},
publisher = {mathdoc},
volume = {92},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a8/}
}
TY - JOUR AU - S. N. Oshchepkova AU - O. M. Penkin AU - D. Savasteev TI - Strong Maximum Principle for an~Elliptic Operator on a~Stratified Set JO - Matematičeskie zametki PY - 2012 SP - 276 EP - 290 VL - 92 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a8/ LA - ru ID - MZM_2012_92_2_a8 ER -
S. N. Oshchepkova; O. M. Penkin; D. Savasteev. Strong Maximum Principle for an~Elliptic Operator on a~Stratified Set. Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 276-290. http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a8/