Strong Maximum Principle for an~Elliptic Operator on a~Stratified Set
Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 276-290.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive a necessary condition for an extremum for functions on stratified sets in terms of integrals of the normal derivative over spheres and use this condition to prove the strong maximum principle for the divergence operator on a stratified set.
Keywords: stratified set, extremum, necessary condition, divergence operator, strong maximum principle.
@article{MZM_2012_92_2_a8,
     author = {S. N. Oshchepkova and O. M. Penkin and D. Savasteev},
     title = {Strong {Maximum} {Principle} for {an~Elliptic} {Operator} on {a~Stratified} {Set}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {276--290},
     publisher = {mathdoc},
     volume = {92},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a8/}
}
TY  - JOUR
AU  - S. N. Oshchepkova
AU  - O. M. Penkin
AU  - D. Savasteev
TI  - Strong Maximum Principle for an~Elliptic Operator on a~Stratified Set
JO  - Matematičeskie zametki
PY  - 2012
SP  - 276
EP  - 290
VL  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a8/
LA  - ru
ID  - MZM_2012_92_2_a8
ER  - 
%0 Journal Article
%A S. N. Oshchepkova
%A O. M. Penkin
%A D. Savasteev
%T Strong Maximum Principle for an~Elliptic Operator on a~Stratified Set
%J Matematičeskie zametki
%D 2012
%P 276-290
%V 92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a8/
%G ru
%F MZM_2012_92_2_a8
S. N. Oshchepkova; O. M. Penkin; D. Savasteev. Strong Maximum Principle for an~Elliptic Operator on a~Stratified Set. Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 276-290. http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a8/

[1] O. A. Oleinik, “O svoistvakh reshenii nekotorykh kraevykh zadach dlya uravnenii ellipticheskogo tipa”, Matem. sb., 30:3 (1952), 695–702 | MR | Zbl

[2] E. Hopf, “A remark on linear elliptic differential equation of second order”, Proc. Amer. Math. Soc, 3 (1952), 791–793 | DOI | MR | Zbl

[3] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[4] S. N. Oschepkova, O. M Penkin, “Ob odnom neobkhodimom uslovii ekstremuma na stratifitsirovannom mnozhestve”, DAN, 416:1 (2007), 22–25 | MR | Zbl

[5] F. Pham, Introduction á l'étude topologique des singularités de Landau, Mémorial des Sciences Mathématiques, 164, Gauthier-Villars Éditeur, Paris, 1967 | MR | Zbl

[6] V. A. Zorich, Matematicheskii analiz, Ch. 1, Nauka, M., 1981 | MR | Zbl

[7] O. Penkin, “About a geometrical approach to multistructures and some qualitative properties of solutions”, Partial Differential Equations on Multistructures, Lecture Notes in Pure and Appl. Math., 219, Marcel Dekker, New York, 2001, 183–191 | MR | Zbl

[8] K. Yano, S. Bokhner, Krivizna i chisla Betti, IL, M., 1957 | MR | Zbl

[9] O. M Penkin, Yu. V. Pokornyi, “O nesovmestnykh neravenstvakh dlya ellipticheskikh operatorov na stratifitsirovannykh mnozhestvakh”, Differents. uravneniya, 34:8 (1998), 1107–1113 | MR | Zbl