Analytic Dynamics of a One-Dimensional System of Particles with Strong Interaction
Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 262-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the dynamics of a system of $N$ particles on the circle with interaction of nearest neighbors, a Coulomb potential, and an analytic external force. The trajectories are real analytic functions of time. However, the series for them converge only for sufficiently small times. For zero initial velocities and a uniform initial location of particles, we prove $N$-dependent estimates on the coefficients of this series.
Keywords: system of particles with strong interaction, electric current, analytic external force.
Mots-clés : Coulomb potential
@article{MZM_2012_92_2_a7,
     author = {V. A. Malyshev},
     title = {Analytic {Dynamics} of a {One-Dimensional} {System} of {Particles} with {Strong} {Interaction}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {262--275},
     publisher = {mathdoc},
     volume = {92},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a7/}
}
TY  - JOUR
AU  - V. A. Malyshev
TI  - Analytic Dynamics of a One-Dimensional System of Particles with Strong Interaction
JO  - Matematičeskie zametki
PY  - 2012
SP  - 262
EP  - 275
VL  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a7/
LA  - ru
ID  - MZM_2012_92_2_a7
ER  - 
%0 Journal Article
%A V. A. Malyshev
%T Analytic Dynamics of a One-Dimensional System of Particles with Strong Interaction
%J Matematičeskie zametki
%D 2012
%P 262-275
%V 92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a7/
%G ru
%F MZM_2012_92_2_a7
V. A. Malyshev. Analytic Dynamics of a One-Dimensional System of Particles with Strong Interaction. Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 262-275. http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a7/

[1] V. A. Malyshev, “Fixed points for one-dimensional particle system with strong interaction”, Mosc. Math. J., 12:1 (2012), 139–147

[2] V. A. Malyshev, “Kriticheskie sostoyaniya mnogochastichnykh sistem s silnym vzaimodeistviem na okruzhnosti”, Probl. peredachi inform., 47:2 (2011), 117–127 | MR | Zbl

[3] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, GITTL, M.–L., 1950 | MR | Zbl

[4] V. A. Malyshev, “Pochemu techet tok: mnogochastichnaya odnomernaya model”, TMF, 155:2 (2008), 301–311 | MR | Zbl

[5] E. Caglioti, C. Marchioro, M. Pulvirenti, “Non-equilibrium dynamics of three-dimensional infinite particle systems”, Comm. Math. Phys., 215:1 (2000), 25–43 | DOI | MR | Zbl

[6] S. Caprino, M. Pulvirenti, “A cluster expansion approach to a one-dimensional Boltzman equation: a validity result”, Comm. Math. Phys., 166:3 (1995), 603–631 | DOI | MR | Zbl

[7] C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Dilute Gases, Appl. Math. Sci., 106, Springer-Verlag, New York, 1994 | MR | Zbl

[8] R. L. Dobrushin, J. Fritz, “Non-equilibrium dynamics of one-dimensional infinite particle systems with a hard-core interaction”, Comm. Math. Phys., 55:3 (1977), 275–292 | DOI | MR | Zbl

[9] O. E. Lanford, III, “Time evolution of large classical systems”, Dynamical systems, theory and applications, Lecture Notes in Phys., 38, Springer-Verlag, Berlin, 1975, 1–111 | MR | Zbl

[10] Ya. G. Sinai, “Postroenie dinamiki v odnomernykh sistemakh statisticheskoi mekhaniki”, TMF, 11:2 (1972), 248–258 | MR

[11] H. Spohn, Large Scale Dynamics of Interacting Particles, Texts Monogr. Phys., Springer-Verlag, Berlin, 1991 | Zbl

[12] V. A. Malyshev, “Dynamical clusters of infinite particle dynamics”, J. Math. Phys., 46:7 (2005), 073302 | DOI | MR | Zbl