The Topology of Spaces of Morse Functions on Surfaces
Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 241-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

The topology of the space $F=F(M)$ of Morse functions on a compact smooth orientable two-dimensional surface $M$ is studied.
Keywords: Morse function on a surface, framed Morse function, space of Morse functions, smooth compact orientable surface
Mots-clés : homotopy equivalence.
@article{MZM_2012_92_2_a6,
     author = {E. A. Kudryavtseva},
     title = {The {Topology} of {Spaces} of {Morse} {Functions} on {Surfaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {241--261},
     publisher = {mathdoc},
     volume = {92},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a6/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
TI  - The Topology of Spaces of Morse Functions on Surfaces
JO  - Matematičeskie zametki
PY  - 2012
SP  - 241
EP  - 261
VL  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a6/
LA  - ru
ID  - MZM_2012_92_2_a6
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%T The Topology of Spaces of Morse Functions on Surfaces
%J Matematičeskie zametki
%D 2012
%P 241-261
%V 92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a6/
%G ru
%F MZM_2012_92_2_a6
E. A. Kudryavtseva. The Topology of Spaces of Morse Functions on Surfaces. Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 241-261. http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a6/

[1] E. A. Kudryavtseva, D. A. Permyakov, “Osnaschennye funktsii Morsa na poverkhnostyakh”, Matem. sb., 201:4 (2010), 33–98 | MR | Zbl

[2] E. A. Kudryavtseva, “Ravnomernaya lemma Morsa i kriterii izotopnosti funktsii Morsa na poverkhnostyakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2009, no. 4, 13–22 | MR

[3] E. A. Kudryavtseva, “O gomotopicheskom tipe prostranstv funktsii Morsa na poverkhnostyakh”, Matem. sb., 204:1 (2013), 79–118, arXiv: math.GT/1104.4796 | DOI | MR | Zbl

[4] E. A. Kudryavtseva, “Spetsialnye osnaschennye funktsii Morsa na poverkhnostyakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2012, no. 4, 14–20

[5] E. A. Kudryavtseva, “Realizatsiya gladkikh funktsii na poverkhnostyakh v vide funktsii vysoty”, Matem. sb., 190:3 (1999), 29–88 | MR | Zbl

[6] V. V. Sharko, “Funktsii na poverkhnostyakh, I”, Nekotorye problemy sovremennoi matematiki, Pratsi In-tu matem. NAN Ukraïni, 25, Naukova dumka, Kiev, 1998, 408–434 | MR

[7] S. I. Maksymenko, “Path-components of Morse mappings spaces of surfaces”, Comment. Math. Helv., 80:3 (2005), 655–690 | DOI | MR | Zbl

[8] Yu. Burman, “Morse theory for functions of two variables without critical points”, Funct. Differ. Equ., 3:1-2 (1995), 31–43 | MR | Zbl

[9] Yu. M. Burman, “Triangulations of surfaces with boundary and the homotopy principle for functions without critical points”, Ann. Global Anal. Geom., 17:3 (1999), 221–238 | DOI | MR | Zbl

[10] E. A. Kudryavtseva, “Svyaznye komponenty prostranstv funktsii Morsa s fiksirovannymi kriticheskimi tochkami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2012, no. 1, 3–12

[11] V. I. Arnold, “Ischislenie zmei i kombinatorika chisel Bernulli, Eilera i Springera grupp Kokstera”, UMN, 47:1 (1992), 3–45 | MR | Zbl

[12] V. I. Arnold, “Topologicheskaya klassifikatsiya kompleksnykh trigonometricheskikh mnogochlenov i kombinatorika grafov s odinakovym chislom vershin i reber”, Funkts. analiz i ego pril., 30:1 (1996), 1–17 | MR | Zbl

[13] E. V. Kulinich, “On topologically equivalent Morse functions on surfaces”, Methods Funct. Anal. Topology, 4:1 (1998), 59–64 | MR | Zbl

[14] V. I. Arnold, “Topological classification of Morse functions and generalisations of Hilbert's 16-th problem”, Math. Phys. Anal. Geom., 10:3 (2007), 227–236 | DOI | MR | Zbl

[15] S. Maksymenko, “Homotopy types of stabilizers and orbits of Morse functions on surfaces”, Ann. Global Anal. Geom., 29:3 (2006), 241–285 | DOI | MR | Zbl

[16] A. T. Fomenko, “Teoriya Morsa integriruemykh gamiltonovykh sistem”, DAN SSSR, 287:5 (1986), 1071–1075 | MR | Zbl

[17] S. V. Matveev, A. T. Fomenko, “Izoenergeticheskie poverkhnosti gamiltonovykh sistem, perechislenie trekhmernykh mnogoobrazii v poryadke vozrastaniya ikh slozhnosti i vychislenie ob'emov zamknutykh giperbolicheskikh mnogoobrazii”, UMN, 43:1 (1988), 5–22 | MR | Zbl

[18] S. V. Matveev, A. T. Fomenko, V. V. Sharko, “Kruglye funktsii Morsa i izoenergeticheskie poverkhnosti integriruemykh gamiltonovykh sistem”, Matem. sb., 135:3 (1988), 325–345 | MR | Zbl

[19] S. V. Matveev, A. T. Fomenko, “Teoriya tipa Morsa dlya integriruemykh gamiltonovykh sistem s ruchnymi integralami”, Matem. zametki, 43:5 (1988), 663–671 | MR | Zbl

[20] A. T. Fomenko, Kh. Tsishang, “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | MR | Zbl

[21] A. V. Bolsinov, A. T. Fomenko, “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii. I”, Matem. sb., 185:4 (1994), 27–80 | MR | Zbl

[22] A. V. Bolsinov, A. T. Fomenko, Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Kibernetika: neogranichennye vozmozhnosti i vozmozhnye ogranicheniya, Nauka, M., 1997 | MR | Zbl

[23] E. A. Kudryavtseva, “Ustoichivye topologicheskie i gladkie invarianty sopryazhennosti gamiltonovykh sistem na poverkhnostyakh”, Topologicheskie metody v teorii gamiltonovykh sistem, Faktorial, M., 1998, 147–202

[24] E. A. Kudryavtseva, “Ustoichivye invarianty sopryazhennosti gamiltonovykh sistem na dvumernykh poverkhnostyakh”, DAN, 361:3 (1998), 314–317 | MR | Zbl

[25] Yu. A. Brailov, E. A. Kudryavtseva, “Ustoichivaya topologicheskaya nesopryazhennost gamiltonovykh sistem ne dvumernykh poverkhnostyakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1999, no. 2, 20–27 | MR | Zbl

[26] V. A. Vasilev, “Topologiya prostranstv funktsii bez slozhnykh osobennostei”, Funkts. analiz i ego pril., 23:4 (1989), 24–36 | MR | Zbl

[27] A. Chenciner, F. Laudenbach, “Morse 2-jet space and $h$-principle”, Bull. Braz. Math. Soc. (N.S.), 40:4 (2009), 455–463 | DOI | MR | Zbl

[28] A. E. Hatcher, “Higher simple homotopy theory”, Ann. of Math. (2), 102:1 (1975), 101–137 | DOI | MR | Zbl

[29] C. J. Earle, J. Eells, “The diffeomorphism group of a compact Riemann surface”, Bull. Amer. Math. Soc., 73:4 (1967), 557–559 | DOI | MR | Zbl

[30] C. J. Earle, J. Eells, “A fibre bundle description of Teichmüller theory”, J. Differential Geometry, 3 (1969), 19–43 | MR | Zbl

[31] S. Smale, “Diffeomorphisms of the $2$-sphere”, Proc. Amer. Math. Soc., 10 (1959), 621–626 | MR | Zbl

[32] M. Dehn, “Die Gruppe der Abbildungsklassen. Das arithmetische Feld auf Flächen”, Acta Math., 69:1 (1938), 135–206 | DOI | MR | Zbl

[33] J. S. Birman, A. Lubotzky, J. McCarthy, “Abelian and solvable subgroups of the mapping class group”, Duke Math. J., 50:4 (1983), 1107–1120 | DOI | MR | Zbl

[34] D. A. Permyakov, Lineinaya nezavisimost skruchivanii Dena, Diplomnaya rabota, 2009 http://dfgm.math.msu.su/files/0students/2009-dip-permyakov.pdf

[35] A. T. Fomenko, D. B. Fuks, Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR | Zbl

[36] J. S. Birman, “Mapping class groups and their relationship to braid group”, Comm. Pure Appl. Math., 22 (1969), 213–238 | MR | Zbl