On Matrices with Different Tropical and Kapranov Ranks
Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 316-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: tropical semiring, tropical rank, Kapranov rank.
@article{MZM_2012_92_2_a12,
     author = {Ya. N. Shitov},
     title = {On {Matrices} with {Different} {Tropical} and {Kapranov} {Ranks}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {316--320},
     publisher = {mathdoc},
     volume = {92},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a12/}
}
TY  - JOUR
AU  - Ya. N. Shitov
TI  - On Matrices with Different Tropical and Kapranov Ranks
JO  - Matematičeskie zametki
PY  - 2012
SP  - 316
EP  - 320
VL  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a12/
LA  - ru
ID  - MZM_2012_92_2_a12
ER  - 
%0 Journal Article
%A Ya. N. Shitov
%T On Matrices with Different Tropical and Kapranov Ranks
%J Matematičeskie zametki
%D 2012
%P 316-320
%V 92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a12/
%G ru
%F MZM_2012_92_2_a12
Ya. N. Shitov. On Matrices with Different Tropical and Kapranov Ranks. Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 316-320. http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a12/

[1] G. L. Litvinov, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye i algoritmicheskie metody. XIII, Zap. nauchn. sem. POMI, 326, POMI, SPb., 2005, 145–182 | MR | Zbl

[2] G. L. Litvinov, V. P. Maslov, Idempotency, Publ. Newton Inst., 11, Cambridge Univ. Press, Cambridge, 1998, 420–443 | MR | Zbl

[3] V. P. Maslov, UMN, 42:3 (1987), 39–48 | MR | Zbl

[4] M. Akian, S. Gaubert, A. Guterman, Tropical and Idempotent Mathematics, Contemp. Math., 495, Amer. Math. Soc., Providence, RI, 2010, 1–38 | DOI | MR | Zbl

[5] F. L. Baccelli, G. Cohen, G. J. Olsder, J. P. Quadrat, Synchronization and Linearity. An Algebra for Discrete Event Systems, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, Chichester, 1992 | MR | Zbl

[6] B. Heidergott, G. J. Olsder, J. van der Woude, Max Plus at Work. Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and its Applications, Princeton Ser. Appl. Math., Princeton Univ. Press, Princeton, NJ, 2006 | MR | Zbl

[7] M. Einsiedler, M. Kapranov, D. Lind, J. Reine Angew. Math., 601 (2006), 139–157 | DOI | MR | Zbl

[8] G. Mikhalkin, “Amoebas of algebraic varieties and tropical geometry”, Different Faces of Geometry, Int. Math. Ser. (N. Y.), 3, Kluwer Acad. Publ., New York, 2004, 257–300 | DOI | MR | Zbl

[9] M. Develin, F. Santos, B. Sturmfels, Combinatorial and Computational Geometry, Math. Sci. Res. Inst. Publ., 52, Cambridge Univ. Press, Cambridge, 2005, 213–242 | MR | Zbl

[10] L. B. Beasley, A. E. Guterman, J. Korean Math. Soc., 42:2 (2005), 223–241 | DOI | MR | Zbl

[11] B. Poonen, Enseign. Math. (2), 39:1-2 (1993), 87–106 | MR | Zbl

[12] Z. Izhakian, Tropical and Idempotent Mathematics, Contemp. Math., 495, Amer. Math. Soc., Providence, RI, 2010, 173–191 | DOI | MR | Zbl

[13] M. Chan, A. N. Jensen, E. Rubei, Linear Algebra Appl., 435:7 (2011), 1598–1611 | DOI | MR | Zbl