Realization of Boolean Functions by Formulas in Continuous Bases Containing a Continuum of Constants
Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 181-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary Boolean function of $n$ variables, we show how to construct formulas of complexity $O(2^{n/2})$ in the bases $$ \{x-y,xy,|x|\} \cup [0,1],\qquad \{x-y,x*y,2x,|x|\} \cup [0,1], $$ where ${x*y=\max(-1,\min(1,x))\max(-1,\min(1,y))}$. The obtained estimates are, in general, order-sharp.
Keywords: Boolean function, complexity of the realization of Boolean functions, Shannon function, Lipschitz condition, continuous basis, almost-finite basis.
@article{MZM_2012_92_2_a1,
     author = {Ya. V. Vegner and S. B. Gashkov},
     title = {Realization of {Boolean} {Functions} by {Formulas} in {Continuous} {Bases} {Containing} a {Continuum} of {Constants}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {181--191},
     publisher = {mathdoc},
     volume = {92},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a1/}
}
TY  - JOUR
AU  - Ya. V. Vegner
AU  - S. B. Gashkov
TI  - Realization of Boolean Functions by Formulas in Continuous Bases Containing a Continuum of Constants
JO  - Matematičeskie zametki
PY  - 2012
SP  - 181
EP  - 191
VL  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a1/
LA  - ru
ID  - MZM_2012_92_2_a1
ER  - 
%0 Journal Article
%A Ya. V. Vegner
%A S. B. Gashkov
%T Realization of Boolean Functions by Formulas in Continuous Bases Containing a Continuum of Constants
%J Matematičeskie zametki
%D 2012
%P 181-191
%V 92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a1/
%G ru
%F MZM_2012_92_2_a1
Ya. V. Vegner; S. B. Gashkov. Realization of Boolean Functions by Formulas in Continuous Bases Containing a Continuum of Constants. Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 181-191. http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a1/

[1] S. B. Gashkov, “Slozhnost realizatsii bulevykh funktsii skhemami iz funktsionalnykh elementov i formulami v bazisakh, elementy kotorykh realizuyut nepreryvnye funktsii”, Problemy kibernetiki, 37 (1980), 57–118 | MR | Zbl

[2] G. Turán, F. Vatan, “On the computation of Boolean functions by analog circuits of bounded fan-in”, J. Comput. System Sci., 54:1 (1997), 199–212 | DOI | MR | Zbl

[3] S. B. Gashkov, Ya. V. Vegner, “O slozhnosti realizatsii bulevykh funktsii veschestvennymi formulami”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2008, no. 2, 47–49 | MR | Zbl