Averaging of Linear Operators, Adiabatic Approximation, and Pseudodifferential Operators
Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 163-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

An example of Schrödinger and Klein–Gordon equations with fast oscillating coefficients is used to show that they can be averaged by an adiabatic approximation based on V. P. Maslov's operator method.
Mots-clés : Klein–Gordon equation
Keywords: Schrödinger equation, adiabatic approximation, asymptotic solution, pseudodifferential operator, adiabatic principle, perturbation theory.
@article{MZM_2012_92_2_a0,
     author = {J. Br\"uning and V. V. Grushin and S. Yu. Dobrokhotov},
     title = {Averaging of {Linear} {Operators,} {Adiabatic} {Approximation,} and {Pseudodifferential} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--180},
     publisher = {mathdoc},
     volume = {92},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a0/}
}
TY  - JOUR
AU  - J. Brüning
AU  - V. V. Grushin
AU  - S. Yu. Dobrokhotov
TI  - Averaging of Linear Operators, Adiabatic Approximation, and Pseudodifferential Operators
JO  - Matematičeskie zametki
PY  - 2012
SP  - 163
EP  - 180
VL  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a0/
LA  - ru
ID  - MZM_2012_92_2_a0
ER  - 
%0 Journal Article
%A J. Brüning
%A V. V. Grushin
%A S. Yu. Dobrokhotov
%T Averaging of Linear Operators, Adiabatic Approximation, and Pseudodifferential Operators
%J Matematičeskie zametki
%D 2012
%P 163-180
%V 92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a0/
%G ru
%F MZM_2012_92_2_a0
J. Brüning; V. V. Grushin; S. Yu. Dobrokhotov. Averaging of Linear Operators, Adiabatic Approximation, and Pseudodifferential Operators. Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 163-180. http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a0/

[1] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh. Matematicheskie zadachi mekhaniki kompozitsionnykh materialov, Nauka, M., 1984 | MR | Zbl

[2] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl

[3] V. A. Marchenko, E. Ya. Khruslov, Usrednennye modeli mikroneodnorodnykh sred, FTINT im. B. I. Verkina NAN Ukrainy, Kharkov, 2003

[4] A. Bensoussan, J.-L. Lions, G. Papanicolaou, Asymptotic Analysis of Periodic Structures, Stud. Math. Appl., 5, North-Holland Publ., Amsterdam, 1978 | MR | Zbl

[5] S. Yu. Dobrokhotov, “Prilozhenie teorii Maslova k dvum zadacham s operatorno-znachnym simvolom”, UMN, 39:4 (1984), 125

[6] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[7] L. V. Berlyand, S. Yu. Dobrokhotov, ““Operatornoe razdelenie peremennykh” v zadache o korotkovolnovoi asimptotike dlya differentsialnykh uravnenii s bystromenyayuschimisya koeffitsientami”, DAN SSSR, 296:1 (1987), 80–84 | MR | Zbl

[8] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskiy, “Operator separation of variablrs for adiabatic problems in quantum and wave mechanics”, J. Engrg. Math., 55:1-4 (2006), 183–237 | DOI | MR | Zbl

[9] V. V. Grushin, S. Yu. Dobrokhotov, “Podstanovka Paierlsa i operatornyi metod Maslova”, Matem. zametki, 87:4 (2010), 554–571 | MR | Zbl

[10] I. Bryuning, V. V. Grushin, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Obobschennoe preobrazovanie Foldi–Vutkhaizena i psevdodifferentsialnye operatory”, TMF, 167:2 (2011), 171–192

[11] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl

[12] V. V. Belov, S. Yu. Dobrokhotov, V. P. Maslov, T. Ya. Tudorovskii, “Obobschennyi adiabaticheskii printsip dlya opisaniya dinamiki elektrona v iskrivlennykh nanostrukturakh”, UFN, 175:9 (2005), 1004–1010 | DOI

[13] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika. T. 9. Statisticheskaya fizika. Ch. 2. Teoriya kondensirovannogo sostoyaniya, Nauka, M., 1978 | MR

[14] V. V. Kucherenko, “Asimptotika resheniya sistemy $A(x,-ih\frac\partial{\partial x})$ pri $h\to0$ v sluchae kharakteristik peremennoi kratnosti”, Izv. AN SSSR. Ser. matem., 38:3 (1974), 625–662 | MR | Zbl

[15] L. Khermander, “Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi T. 3. Psevdodifferentsialnye operatory”, Mir, M., 1987 | MR | Zbl

[16] M. A. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR | Zbl

[17] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[18] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[19] V. V. Grushin, “Primenenie mnogoparametricheskoi teorii vozmuschenii fredgolmovykh operatorov k blokhovskim funktsiyam”, Matem. zametki, 86:6 (2009), 819–828 | MR | Zbl