Averaging of Linear Operators, Adiabatic Approximation, and Pseudodifferential Operators
Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 163-180

Voir la notice de l'article provenant de la source Math-Net.Ru

An example of Schrödinger and Klein–Gordon equations with fast oscillating coefficients is used to show that they can be averaged by an adiabatic approximation based on V. P. Maslov's operator method.
Mots-clés : Klein–Gordon equation
Keywords: Schrödinger equation, adiabatic approximation, asymptotic solution, pseudodifferential operator, adiabatic principle, perturbation theory.
@article{MZM_2012_92_2_a0,
     author = {J. Br\"uning and V. V. Grushin and S. Yu. Dobrokhotov},
     title = {Averaging of {Linear} {Operators,} {Adiabatic} {Approximation,} and {Pseudodifferential} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--180},
     publisher = {mathdoc},
     volume = {92},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a0/}
}
TY  - JOUR
AU  - J. Brüning
AU  - V. V. Grushin
AU  - S. Yu. Dobrokhotov
TI  - Averaging of Linear Operators, Adiabatic Approximation, and Pseudodifferential Operators
JO  - Matematičeskie zametki
PY  - 2012
SP  - 163
EP  - 180
VL  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a0/
LA  - ru
ID  - MZM_2012_92_2_a0
ER  - 
%0 Journal Article
%A J. Brüning
%A V. V. Grushin
%A S. Yu. Dobrokhotov
%T Averaging of Linear Operators, Adiabatic Approximation, and Pseudodifferential Operators
%J Matematičeskie zametki
%D 2012
%P 163-180
%V 92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a0/
%G ru
%F MZM_2012_92_2_a0
J. Brüning; V. V. Grushin; S. Yu. Dobrokhotov. Averaging of Linear Operators, Adiabatic Approximation, and Pseudodifferential Operators. Matematičeskie zametki, Tome 92 (2012) no. 2, pp. 163-180. http://geodesic.mathdoc.fr/item/MZM_2012_92_2_a0/