Representation of Certain Logarithmic Functions as Polynomials with a Small Number of Nonzero Coefficients
Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 68-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an element of the ring of algebraic integers having the special form $1-z\lambda$. We obtain a formula for calculating its logarithmic functions. Thus, we verify the conjecture that logarithmic functions of the element $1-z\lambda$ are polynomials in $z$ such that $z$ appears only in powers that are divisors of the number of the logarithmic function.
Keywords: logarithmic function, algebraic integer of the form $1-z\lambda$, ring of algebraic integers, algebraic extension of a field
Mots-clés : $p$-adic logarithm.
@article{MZM_2012_92_1_a6,
     author = {V. S. Rainchik},
     title = {Representation of {Certain} {Logarithmic} {Functions} as {Polynomials} with a {Small} {Number} of {Nonzero} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {68--73},
     publisher = {mathdoc},
     volume = {92},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a6/}
}
TY  - JOUR
AU  - V. S. Rainchik
TI  - Representation of Certain Logarithmic Functions as Polynomials with a Small Number of Nonzero Coefficients
JO  - Matematičeskie zametki
PY  - 2012
SP  - 68
EP  - 73
VL  - 92
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a6/
LA  - ru
ID  - MZM_2012_92_1_a6
ER  - 
%0 Journal Article
%A V. S. Rainchik
%T Representation of Certain Logarithmic Functions as Polynomials with a Small Number of Nonzero Coefficients
%J Matematičeskie zametki
%D 2012
%P 68-73
%V 92
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a6/
%G ru
%F MZM_2012_92_1_a6
V. S. Rainchik. Representation of Certain Logarithmic Functions as Polynomials with a Small Number of Nonzero Coefficients. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 68-73. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a6/

[1] V. V. Nazarov, Ob ispolzovanii svoistva kommutirovaniya simvola stepennogo vycheta v skhemakh otkrytogo raspredeleniya klyucha, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 2006

[2] E. Artin, J. Tate, Class Field Theory, W. A. Benjamin, New York, 1968 | MR | Zbl

[3] M. A. Cherepnev, “Skhemy otkrytogo raspredeleniya klyuchei na osnove nekommutativnoi gruppy”, Diskret. matem., 15:2 (2003), 47–51 | MR | Zbl