Representation of Certain Logarithmic Functions as Polynomials with a Small Number of Nonzero Coefficients
Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 68-73
Cet article a éte moissonné depuis la source Math-Net.Ru
We study an element of the ring of algebraic integers having the special form $1-z\lambda$. We obtain a formula for calculating its logarithmic functions. Thus, we verify the conjecture that logarithmic functions of the element $1-z\lambda$ are polynomials in $z$ such that $z$ appears only in powers that are divisors of the number of the logarithmic function.
Keywords:
logarithmic function, algebraic integer of the form $1-z\lambda$, ring of algebraic integers, algebraic extension of a field
Mots-clés : $p$-adic logarithm.
Mots-clés : $p$-adic logarithm.
@article{MZM_2012_92_1_a6,
author = {V. S. Rainchik},
title = {Representation of {Certain} {Logarithmic} {Functions} as {Polynomials} with a {Small} {Number} of {Nonzero} {Coefficients}},
journal = {Matemati\v{c}eskie zametki},
pages = {68--73},
year = {2012},
volume = {92},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a6/}
}
TY - JOUR AU - V. S. Rainchik TI - Representation of Certain Logarithmic Functions as Polynomials with a Small Number of Nonzero Coefficients JO - Matematičeskie zametki PY - 2012 SP - 68 EP - 73 VL - 92 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a6/ LA - ru ID - MZM_2012_92_1_a6 ER -
V. S. Rainchik. Representation of Certain Logarithmic Functions as Polynomials with a Small Number of Nonzero Coefficients. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 68-73. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a6/
[1] V. V. Nazarov, Ob ispolzovanii svoistva kommutirovaniya simvola stepennogo vycheta v skhemakh otkrytogo raspredeleniya klyucha, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 2006
[2] E. Artin, J. Tate, Class Field Theory, W. A. Benjamin, New York, 1968 | MR | Zbl
[3] M. A. Cherepnev, “Skhemy otkrytogo raspredeleniya klyuchei na osnove nekommutativnoi gruppy”, Diskret. matem., 15:2 (2003), 47–51 | MR | Zbl