An Ultrametricity Condition for Pretangent Spaces
Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 49-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for the ultrametricity of pretangent spaces to general metric spaces is obtained.
Keywords: ultrametric, pretangent space to a metric space, normalizing sequence, metric betweenness.
@article{MZM_2012_92_1_a4,
     author = {A. A. Dovgoshey and D. V. Dordovskij},
     title = {An {Ultrametricity} {Condition} for {Pretangent} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {49--58},
     publisher = {mathdoc},
     volume = {92},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a4/}
}
TY  - JOUR
AU  - A. A. Dovgoshey
AU  - D. V. Dordovskij
TI  - An Ultrametricity Condition for Pretangent Spaces
JO  - Matematičeskie zametki
PY  - 2012
SP  - 49
EP  - 58
VL  - 92
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a4/
LA  - ru
ID  - MZM_2012_92_1_a4
ER  - 
%0 Journal Article
%A A. A. Dovgoshey
%A D. V. Dordovskij
%T An Ultrametricity Condition for Pretangent Spaces
%J Matematičeskie zametki
%D 2012
%P 49-58
%V 92
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a4/
%G ru
%F MZM_2012_92_1_a4
A. A. Dovgoshey; D. V. Dordovskij. An Ultrametricity Condition for Pretangent Spaces. Matematičeskie zametki, Tome 92 (2012) no. 1, pp. 49-58. http://geodesic.mathdoc.fr/item/MZM_2012_92_1_a4/

[1] J. Heinonen, Lectures on Analysis on Metric Spaces, Universitext, Springer-Verlag, New York, 2001 | MR | Zbl

[2] L. Ambrosio, “Metric space valued functions of bounded variation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 17:3 (1990), 439–478 | MR | Zbl

[3] L. Ambrosio, “Fine properties of sets of finite perimeter in doubling metric measure spaces”, Set-Valued Anal., 10:2-3 (2002), 111–128 | DOI | MR | Zbl

[4] L. Ambrosio, B. Kircheim, “Currents in metric spaces”, Acta Math., 185:1 (2000), 1–80 | DOI | MR | Zbl

[5] L. Ambrosio, B. Kircheim, “Rectifiable sets in metric and Banach spaces”, Math. Ann., 318:3 (2000), 527–555 | DOI | MR | Zbl

[6] P. Hajłasz, “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5:4 (1996), 403–415 | MR | Zbl

[7] J. Cheeger, “Differentiability of Lipschitz functions on metric measure spaces”, Geom. Funct. Anal., 9:3 (1999), 428–517 | DOI | MR | Zbl

[8] N. Shanmugalingam, “Newtonian space: an extension of Sobolev spaces to metric measure spaces”, Rev. Mat. Iberoamericana, 16:2 (2000), 243–279 | DOI | MR | Zbl

[9] M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999 | MR | Zbl

[10] O. Dovgoshey, O. Martio, Tangent Spaces to Metric Spaces, Reports in Mathematics, Preprint 480, University of Helsinki, 2008

[11] O. Dovgoshey, F. Abdullayev, M. Küçükaslan, “Compactness and boundedness of tangent spaces to metric spaces”, Beiträge Algebra Geom., 51:2 (2010), 547–576 | MR

[12] F. Abdullayev, O. Dovgoshey, M. Küçükaslan, “Metric spaces with unique pretangent spaces. Conditions of the uniqueness”, Ann. Acad. Sci. Fenn. Math., 36:2 (2011), 353–392 | DOI | MR | Zbl

[13] O. A. Dovgoshey, “Tangent spaces to metric spaces and to their subspaces”, Ukr. Math. Bull., 5:4 (2008), 459–477 | MR

[14] Dzh. L. Kelli, Obschaya topologiya, Nauka, M., 1981 | MR | Zbl

[15] A. A. Dovgoshei, D. V. Dordovskii, “Ultrametrichnost kasatelnykh prostranstv k metricheskim prostranstvam”, Dop. NAN Ukraïni, 2010, no. 3, 19–23 | Zbl

[16] O. Dovgoshey, D. Dordovskyi, “Ultrametricity and metric betweenness in tangent spaces to metric spaces”, p-Adic Numbers Ultrametric Anal. Appl., 2:2 (2010), 100–113 | DOI | MR