Estimates of Perturbed Oseen Semigroups and Their Applications to the Navier--Stokes System in~$\mathbb{R}^n$
Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 880-895.

Voir la notice de l'article provenant de la source Math-Net.Ru

For perturbed Oseen semigroups in $\mathbb{R}^n$, we establish their power $L_p-L_q$ estimates. These estimates are used to prove the existence of small global solutions to perturbed nonlinear Oseen systems and also of estimates of their $L_p$-norms as $t\to \infty$.
Keywords: Oseen semigroup, perturbed nonlinear Oseen system, power $L_p-L_q$ estimates, Navier–Stokes system, solenoidal field, Cauchy problem
Mots-clés : Fourier transform.
@article{MZM_2012_91_6_a8,
     author = {L. I. Sazonov},
     title = {Estimates of {Perturbed} {Oseen} {Semigroups} and {Their} {Applications} to the {Navier--Stokes} {System} in~$\mathbb{R}^n$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {880--895},
     publisher = {mathdoc},
     volume = {91},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a8/}
}
TY  - JOUR
AU  - L. I. Sazonov
TI  - Estimates of Perturbed Oseen Semigroups and Their Applications to the Navier--Stokes System in~$\mathbb{R}^n$
JO  - Matematičeskie zametki
PY  - 2012
SP  - 880
EP  - 895
VL  - 91
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a8/
LA  - ru
ID  - MZM_2012_91_6_a8
ER  - 
%0 Journal Article
%A L. I. Sazonov
%T Estimates of Perturbed Oseen Semigroups and Their Applications to the Navier--Stokes System in~$\mathbb{R}^n$
%J Matematičeskie zametki
%D 2012
%P 880-895
%V 91
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a8/
%G ru
%F MZM_2012_91_6_a8
L. I. Sazonov. Estimates of Perturbed Oseen Semigroups and Their Applications to the Navier--Stokes System in~$\mathbb{R}^n$. Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 880-895. http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a8/

[1] V. I. Yudovich, Metod linearizatsii v gidrodinamicheskoi teorii ustoichivosti, Izd-vo Rostovsk. un-ta, Rostov-na-Donu, 1984 | Zbl

[2] T. Kato, “Strong $L^{p}$-solutions of the Navier–Stokes equation in $\mathbb R^{m}$, with applications to weak solutions”, Math. Z., 187:4 (1984), 471–480 | DOI | MR | Zbl

[3] L. I. Sazonov, V. I. Yudovich, “Ustoichivost statsionarnykh reshenii parabolicheskikh uravnenii i sistemy Nave–Stoksa vo vsem prostranstve”, Sib. matem. zhurn., 29:1 (1988), 151–158 | MR | Zbl

[4] P. Biler, M. Cannone, G. Karch, “Asymptotic stability of Navier–Stokes flow past an obstacle”, Nonlocal Elliptic and Parabolic Problems, Banach Center Publ., 66, Polish Acad. Sci., Warsaw, 2004, 47–59 | DOI | MR | Zbl

[5] T. Miyakawa, “On nonstationary solutions of the Navier–Stokes equations in an exterior domain”, Hiroshima Math J., 12:1 (1982), 115–140 | MR | Zbl

[6] L. I. Sazonov, “Obosnovanie metoda linearizatsii v zadache obtekaniya”, Izv. RAN. Ser. matem., 58:5 (1994), 85–109 | MR | Zbl

[7] Kh. I. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR | Zbl

[8] L. I. Sazonov, “Otsenki vozmuschennoi polugruppy Ozeena”, Vladikavk. matem. zhurn., 11:3 (2009), 51–61 | MR

[9] H.-O. Bae, B.-J. Jin, “Temporal and spatial decay rates of Navier–Stokes solutions in exterior domains”, Bull. Korean Math. Soc., 44:3 (2007), 547–567 | DOI | MR | Zbl

[10] T. Kobayashi, Y. Shibata, “On the Oseen equation in the three-dimensional exterior domains”, Math. Ann., 310:1 (1998), 1–45 | DOI | MR | Zbl

[11] Y. Enomoto, Y. Shibata, “On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier–Stokes equation”, J. Math. Fluid Mech., 7:3 (2005), 339–367 | DOI | MR | Zbl

[12] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR | Zbl