Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_91_6_a6, author = {S. S. Mirzoev and M. Yu. Salimov}, title = {On the {Solvability} of the {Boundary-Value} {Problem} for {Second-Order} {Equations} in {Hilbert} {Space} with an {Operator} {Coefficient} in the {Boundary} {Condition}}, journal = {Matemati\v{c}eskie zametki}, pages = {861--869}, publisher = {mathdoc}, volume = {91}, number = {6}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a6/} }
TY - JOUR AU - S. S. Mirzoev AU - M. Yu. Salimov TI - On the Solvability of the Boundary-Value Problem for Second-Order Equations in Hilbert Space with an Operator Coefficient in the Boundary Condition JO - Matematičeskie zametki PY - 2012 SP - 861 EP - 869 VL - 91 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a6/ LA - ru ID - MZM_2012_91_6_a6 ER -
%0 Journal Article %A S. S. Mirzoev %A M. Yu. Salimov %T On the Solvability of the Boundary-Value Problem for Second-Order Equations in Hilbert Space with an Operator Coefficient in the Boundary Condition %J Matematičeskie zametki %D 2012 %P 861-869 %V 91 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a6/ %G ru %F MZM_2012_91_6_a6
S. S. Mirzoev; M. Yu. Salimov. On the Solvability of the Boundary-Value Problem for Second-Order Equations in Hilbert Space with an Operator Coefficient in the Boundary Condition. Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 861-869. http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a6/
[1] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | MR | Zbl
[2] V. I. Gorbachuk, M. L. Gorbachuk, Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984 | MR | Zbl
[3] M. L. Gorbachuk, A. N. Kochubei, “Samosopryazhennye granichnye zadachi dlya nekotorykh klassov differentsialnykh operatorov”, DAN SSSR, 201:5 (1971), 1029–1032 | MR | Zbl
[4] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR | Zbl
[5] S. G. Krein, G. I. Laptev, “Granichnye zadachi dlya differentsialnykh uravnenii vtorogo poryadka v banakhovom prostranstve. I”, Differents. uravneniya, 2:3 (1966), 382–390 | MR | Zbl
[6] S. G. Krein, G. I. Laptev, “Korrektnost granichnykh zadach dlya differentsialnykh uravnenii vtorogo poryadka v banakhovom prostranstve. II”, Differents. uravneniya, 2:7 (1966), 919–926 | MR | Zbl
[7] S. Ya. Yakubov, B. A. Aliev, “Fredgolmovost kraevoi zadachi s operatorom v kraevykh usloviyakh dlya ellipticheskogo differentsialno-operatornogo uravneniya”, DAN SSSR, 257:5 (1981), 1071–1074 | MR | Zbl
[8] M. G. Gasymov, S. S. Mirzoev, “O razreshimosti kraevykh zadach dlya operatorno-differentsialnykh uravnenii ellipticheskogo tipa vtorogo poryadka”, Differents. uravneniya, 28:4 (1992), 651–661 | MR | Zbl
[9] M. G. Gasymov, “K teorii polinomialnykh operatornykh puchkov”, DAN SSSR, 199:4 (1971), 747–750 | MR | Zbl
[10] S. S. Mirzoev, “Usloviya korrektnoi razreshimosti kraevykh zadach dlya operatorno-differentsialnykh uravnenii”, DAN SSSR, 273:2 (1983), 292–295 | MR | Zbl
[11] S. S. Mirzoev, “O kratnoi polnote kornevykh vektorov polinomialnykh operatornykh puchkov, otvechayuschikh kraevym zadacham na poluosi”, Funkts. analiz i ego pril., 17:2 (1983), 84–85 | MR | Zbl
[12] A. A. Shkalikov, “Ellipticheskie uravneniya v gilbertovom prostranstve i spektralnye zadachi svyazannye s nimi”, Tr. sem. im. I. G. Petrovskogo, 14, Izd-vo Mosk. un-ta, M., 1989, 140–224 | MR | Zbl