On the Solvability of the Boundary-Value Problem for Second-Order Equations in Hilbert Space with an Operator Coefficient in the Boundary Condition
Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 861-869.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the boundary-value problem on a finite interval for a class of second-order operator-differential equations with a linear operator in one of its boundary conditions. We obtain sufficient conditions for the regular solvability of the boundary-value problem under consideration; these conditions are expressed only in terms of its operator coefficients.
Keywords: second-order operator-differential equation, boundary-value problem, Hilbert space, self-adjoint operator, square-integrable function, linear bounded operator, Banach inverse-operator theorem.
@article{MZM_2012_91_6_a6,
     author = {S. S. Mirzoev and M. Yu. Salimov},
     title = {On the {Solvability} of the {Boundary-Value} {Problem} for {Second-Order} {Equations} in {Hilbert} {Space} with an {Operator} {Coefficient} in the {Boundary} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {861--869},
     publisher = {mathdoc},
     volume = {91},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a6/}
}
TY  - JOUR
AU  - S. S. Mirzoev
AU  - M. Yu. Salimov
TI  - On the Solvability of the Boundary-Value Problem for Second-Order Equations in Hilbert Space with an Operator Coefficient in the Boundary Condition
JO  - Matematičeskie zametki
PY  - 2012
SP  - 861
EP  - 869
VL  - 91
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a6/
LA  - ru
ID  - MZM_2012_91_6_a6
ER  - 
%0 Journal Article
%A S. S. Mirzoev
%A M. Yu. Salimov
%T On the Solvability of the Boundary-Value Problem for Second-Order Equations in Hilbert Space with an Operator Coefficient in the Boundary Condition
%J Matematičeskie zametki
%D 2012
%P 861-869
%V 91
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a6/
%G ru
%F MZM_2012_91_6_a6
S. S. Mirzoev; M. Yu. Salimov. On the Solvability of the Boundary-Value Problem for Second-Order Equations in Hilbert Space with an Operator Coefficient in the Boundary Condition. Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 861-869. http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a6/

[1] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | MR | Zbl

[2] V. I. Gorbachuk, M. L. Gorbachuk, Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1984 | MR | Zbl

[3] M. L. Gorbachuk, A. N. Kochubei, “Samosopryazhennye granichnye zadachi dlya nekotorykh klassov differentsialnykh operatorov”, DAN SSSR, 201:5 (1971), 1029–1032 | MR | Zbl

[4] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR | Zbl

[5] S. G. Krein, G. I. Laptev, “Granichnye zadachi dlya differentsialnykh uravnenii vtorogo poryadka v banakhovom prostranstve. I”, Differents. uravneniya, 2:3 (1966), 382–390 | MR | Zbl

[6] S. G. Krein, G. I. Laptev, “Korrektnost granichnykh zadach dlya differentsialnykh uravnenii vtorogo poryadka v banakhovom prostranstve. II”, Differents. uravneniya, 2:7 (1966), 919–926 | MR | Zbl

[7] S. Ya. Yakubov, B. A. Aliev, “Fredgolmovost kraevoi zadachi s operatorom v kraevykh usloviyakh dlya ellipticheskogo differentsialno-operatornogo uravneniya”, DAN SSSR, 257:5 (1981), 1071–1074 | MR | Zbl

[8] M. G. Gasymov, S. S. Mirzoev, “O razreshimosti kraevykh zadach dlya operatorno-differentsialnykh uravnenii ellipticheskogo tipa vtorogo poryadka”, Differents. uravneniya, 28:4 (1992), 651–661 | MR | Zbl

[9] M. G. Gasymov, “K teorii polinomialnykh operatornykh puchkov”, DAN SSSR, 199:4 (1971), 747–750 | MR | Zbl

[10] S. S. Mirzoev, “Usloviya korrektnoi razreshimosti kraevykh zadach dlya operatorno-differentsialnykh uravnenii”, DAN SSSR, 273:2 (1983), 292–295 | MR | Zbl

[11] S. S. Mirzoev, “O kratnoi polnote kornevykh vektorov polinomialnykh operatornykh puchkov, otvechayuschikh kraevym zadacham na poluosi”, Funkts. analiz i ego pril., 17:2 (1983), 84–85 | MR | Zbl

[12] A. A. Shkalikov, “Ellipticheskie uravneniya v gilbertovom prostranstve i spektralnye zadachi svyazannye s nimi”, Tr. sem. im. I. G. Petrovskogo, 14, Izd-vo Mosk. un-ta, M., 1989, 140–224 | MR | Zbl