Are Sufficient Conditions for Conservativity of Minimal Quantum Semigroups Necessary?
Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 900-907.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show by a counter-example that the two basic operator inequalities in the typical sufficient conditions for conservativity of minimal quantum dynamical semigroups are, in fact, both necessary.
Keywords: minimal quantum dynamical semigroup, conservativity, complex Hilbert space, algebra of bounded operators, contraction semigroup
Mots-clés : Markov chain.
@article{MZM_2012_91_6_a10,
     author = {F. Fagnola and L. Pantale\'on Mart{\'\i}nez},
     title = {Are {Sufficient} {Conditions} for {Conservativity} of {Minimal} {Quantum} {Semigroups} {Necessary?}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {900--907},
     publisher = {mathdoc},
     volume = {91},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a10/}
}
TY  - JOUR
AU  - F. Fagnola
AU  - L. Pantaleón Martínez
TI  - Are Sufficient Conditions for Conservativity of Minimal Quantum Semigroups Necessary?
JO  - Matematičeskie zametki
PY  - 2012
SP  - 900
EP  - 907
VL  - 91
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a10/
LA  - ru
ID  - MZM_2012_91_6_a10
ER  - 
%0 Journal Article
%A F. Fagnola
%A L. Pantaleón Martínez
%T Are Sufficient Conditions for Conservativity of Minimal Quantum Semigroups Necessary?
%J Matematičeskie zametki
%D 2012
%P 900-907
%V 91
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a10/
%G ru
%F MZM_2012_91_6_a10
F. Fagnola; L. Pantaleón Martínez. Are Sufficient Conditions for Conservativity of Minimal Quantum Semigroups Necessary?. Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 900-907. http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a10/

[1] A. M. Chebotarev, “Dostatochnye usloviya konservativnosti dissipativnykh dinamicheskikh polugrupp”, TMF, 80:2 (1989), 192–211 | MR | Zbl

[2] A. M. Chebotarev, “O dostatochnykh usloviyakh konservativnosti minimalnoi dinamicheskoi polugruppy”, Matem. zametki, 52:4 (1992), 112–127 | MR | Zbl

[3] A. M. Chebotarev, F. Fagnola, “Sufficient conditions for conservativity of minimal quantum dynamical semigroups”, J. Funct. Anal., 153:2 (1998), 382–404 | DOI | MR | Zbl

[4] F. Fagnola, R. Rebolledo, “The approach to equilibrium of a class of quantum dynamical semigroups”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1:4 (1998), 561–572 | DOI | MR | Zbl

[5] D. W. Stroock, S. R. S. Varadhan, Multidimensional Diffusion Processes, Grundlehren Math. Wiss., 233, Springer-Verlag, Berlin, 1979 | MR | Zbl

[6] J. C. García, R. Quezada, “Hille–Yosida estimate and nonconservativity criteria for quantum dynamical semigroups”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7:3 (2004), 383–394 | DOI | MR | Zbl

[7] A. Dhahri, F. Fagnola, R. Rebolledo, “The decoherence-free subalgebra of a quantum Markov semigroup with unbounded generator”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13:3 (2010), 413–433 | DOI | MR | Zbl