Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_91_6_a10, author = {F. Fagnola and L. Pantale\'on Mart{\'\i}nez}, title = {Are {Sufficient} {Conditions} for {Conservativity} of {Minimal} {Quantum} {Semigroups} {Necessary?}}, journal = {Matemati\v{c}eskie zametki}, pages = {900--907}, publisher = {mathdoc}, volume = {91}, number = {6}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a10/} }
TY - JOUR AU - F. Fagnola AU - L. Pantaleón Martínez TI - Are Sufficient Conditions for Conservativity of Minimal Quantum Semigroups Necessary? JO - Matematičeskie zametki PY - 2012 SP - 900 EP - 907 VL - 91 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a10/ LA - ru ID - MZM_2012_91_6_a10 ER -
F. Fagnola; L. Pantaleón Martínez. Are Sufficient Conditions for Conservativity of Minimal Quantum Semigroups Necessary?. Matematičeskie zametki, Tome 91 (2012) no. 6, pp. 900-907. http://geodesic.mathdoc.fr/item/MZM_2012_91_6_a10/
[1] A. M. Chebotarev, “Dostatochnye usloviya konservativnosti dissipativnykh dinamicheskikh polugrupp”, TMF, 80:2 (1989), 192–211 | MR | Zbl
[2] A. M. Chebotarev, “O dostatochnykh usloviyakh konservativnosti minimalnoi dinamicheskoi polugruppy”, Matem. zametki, 52:4 (1992), 112–127 | MR | Zbl
[3] A. M. Chebotarev, F. Fagnola, “Sufficient conditions for conservativity of minimal quantum dynamical semigroups”, J. Funct. Anal., 153:2 (1998), 382–404 | DOI | MR | Zbl
[4] F. Fagnola, R. Rebolledo, “The approach to equilibrium of a class of quantum dynamical semigroups”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1:4 (1998), 561–572 | DOI | MR | Zbl
[5] D. W. Stroock, S. R. S. Varadhan, Multidimensional Diffusion Processes, Grundlehren Math. Wiss., 233, Springer-Verlag, Berlin, 1979 | MR | Zbl
[6] J. C. García, R. Quezada, “Hille–Yosida estimate and nonconservativity criteria for quantum dynamical semigroups”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7:3 (2004), 383–394 | DOI | MR | Zbl
[7] A. Dhahri, F. Fagnola, R. Rebolledo, “The decoherence-free subalgebra of a quantum Markov semigroup with unbounded generator”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13:3 (2010), 413–433 | DOI | MR | Zbl