Classification of $(v,3)$-Configurations
Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 741-749
Cet article a éte moissonné depuis la source Math-Net.Ru
A $(v,3)$-configuration is a nondegenerate matrix of dimension $v$ over the field $\mathrm{GF}(2)$ considered up to permutation of rows and columns and containing exactly three $1$'s in the rows and columns, while the inverse matrix has also exactly three $1$'s in the rows and columns. It is proved that, for each even $v\ge 4$, there is only one indecomposable $(v,3)$-configuration, while, for odd $v$, there are no such configurations, the only exception being the unique $(5,3)$-configuration.
Mots-clés :
$(v,3)$-configuration, Möbius strip.
Keywords: nondegenerate matrix
Keywords: nondegenerate matrix
@article{MZM_2012_91_5_a9,
author = {F. M. Malyshev and A. A. Frolov},
title = {Classification of $(v,3)${-Configurations}},
journal = {Matemati\v{c}eskie zametki},
pages = {741--749},
year = {2012},
volume = {91},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a9/}
}
F. M. Malyshev; A. A. Frolov. Classification of $(v,3)$-Configurations. Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 741-749. http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a9/
[1] F. M. Malyshev, V. E. Tarakanov, “O $(v,k)$-konfiguratsiyakh”, Matem. sb., 192:9 (2001), 85–108 | MR | Zbl
[2] M. Kholl, Kombinatorika, Mir, M., 1970 | MR | Zbl
[3] A. E. Trishin, “Primery $(v,k)$-matrits”, Vestn. IKSI. Ser. «K», 2003, Spetsialnyi vypusk, posvyaschennyi 100-letiyu akademika A. N. Kolmogorova, 179–185