On the Representation of Fibonacci and Lucas Numbers as the Sum of Three Squares
Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 711-719 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of expressing the Fibonacci numbers and the Lucas numbers as the sum of three squares of integers. We obtain the description of all numbers admitting such a representation.
Keywords: Fibonacci numbers, Lucas numbers, sequence of residues.
@article{MZM_2012_91_5_a6,
     author = {Ya. A. Latushkin and V. N. Ushakov},
     title = {On the {Representation} of {Fibonacci} and {Lucas} {Numbers} as the {Sum} of {Three} {Squares}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {711--719},
     year = {2012},
     volume = {91},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a6/}
}
TY  - JOUR
AU  - Ya. A. Latushkin
AU  - V. N. Ushakov
TI  - On the Representation of Fibonacci and Lucas Numbers as the Sum of Three Squares
JO  - Matematičeskie zametki
PY  - 2012
SP  - 711
EP  - 719
VL  - 91
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a6/
LA  - ru
ID  - MZM_2012_91_5_a6
ER  - 
%0 Journal Article
%A Ya. A. Latushkin
%A V. N. Ushakov
%T On the Representation of Fibonacci and Lucas Numbers as the Sum of Three Squares
%J Matematičeskie zametki
%D 2012
%P 711-719
%V 91
%N 5
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a6/
%G ru
%F MZM_2012_91_5_a6
Ya. A. Latushkin; V. N. Ushakov. On the Representation of Fibonacci and Lucas Numbers as the Sum of Three Squares. Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 711-719. http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a6/

[1] J. H. E. Cohn, “On square Fibonacci numbers”, J. London Math. Soc. (1), 39 (1964), 537–540 | DOI | MR | Zbl

[2] G. Devenport, Vysshaya arifmetika. Vvedenie v teoriyu chisel, Nauka, M., 1965 | MR | Zbl

[3] G. Khasse, Lektsii po teorii chisel, IL, M., 1953 | MR | Zbl

[4] N. N. Vorobev, Chisla Fibonachchi, Populyarnye lektsii po matematike, 6, Nauka, M., 1978 | MR | Zbl

[5] A. F. Horadam, “Basic properties of a certain generalized sequence of numbers”, Fibonacci Quart., 3 (1965), 161–176 | MR | Zbl

[6] Fibonacci Numbers and the Golden Section, http://www.maths.surrey.ac.uk/hosted- sites/ R.Knott/Fibonacci/

[7] Ya. Latushkin, V. Ushakov, “A representation of regular subsequences of recurrent sequences”, Fibonacci Quart., 43:1 (2005), 70–84 | MR | Zbl