On the Representation of Fibonacci and Lucas Numbers as the Sum of Three Squares
Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 711-719.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of expressing the Fibonacci numbers and the Lucas numbers as the sum of three squares of integers. We obtain the description of all numbers admitting such a representation.
Keywords: Fibonacci numbers, Lucas numbers, sequence of residues.
@article{MZM_2012_91_5_a6,
     author = {Ya. A. Latushkin and V. N. Ushakov},
     title = {On the {Representation} of {Fibonacci} and {Lucas} {Numbers} as the {Sum} of {Three} {Squares}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {711--719},
     publisher = {mathdoc},
     volume = {91},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a6/}
}
TY  - JOUR
AU  - Ya. A. Latushkin
AU  - V. N. Ushakov
TI  - On the Representation of Fibonacci and Lucas Numbers as the Sum of Three Squares
JO  - Matematičeskie zametki
PY  - 2012
SP  - 711
EP  - 719
VL  - 91
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a6/
LA  - ru
ID  - MZM_2012_91_5_a6
ER  - 
%0 Journal Article
%A Ya. A. Latushkin
%A V. N. Ushakov
%T On the Representation of Fibonacci and Lucas Numbers as the Sum of Three Squares
%J Matematičeskie zametki
%D 2012
%P 711-719
%V 91
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a6/
%G ru
%F MZM_2012_91_5_a6
Ya. A. Latushkin; V. N. Ushakov. On the Representation of Fibonacci and Lucas Numbers as the Sum of Three Squares. Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 711-719. http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a6/

[1] J. H. E. Cohn, “On square Fibonacci numbers”, J. London Math. Soc. (1), 39 (1964), 537–540 | DOI | MR | Zbl

[2] G. Devenport, Vysshaya arifmetika. Vvedenie v teoriyu chisel, Nauka, M., 1965 | MR | Zbl

[3] G. Khasse, Lektsii po teorii chisel, IL, M., 1953 | MR | Zbl

[4] N. N. Vorobev, Chisla Fibonachchi, Populyarnye lektsii po matematike, 6, Nauka, M., 1978 | MR | Zbl

[5] A. F. Horadam, “Basic properties of a certain generalized sequence of numbers”, Fibonacci Quart., 3 (1965), 161–176 | MR | Zbl

[6] Fibonacci Numbers and the Golden Section, http://www.maths.surrey.ac.uk/hosted- sites/ R.Knott/Fibonacci/

[7] Ya. Latushkin, V. Ushakov, “A representation of regular subsequences of recurrent sequences”, Fibonacci Quart., 43:1 (2005), 70–84 | MR | Zbl