Homogeneous Orthogonally Additive Polynomials on Vector Lattices
Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 704-710.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that an orthogonally additive order bounded homogeneous polynomial acting between uniformly complete vector lattices admits a representation in the form of the composition of a linear order bounded operator and a special homogeneous polynomial playing the role of a power-law function, which is absent in the vector lattice. This result helps to establish a criterion for the integral representability of an orthogonally additive homogeneous polynomial.
Keywords: vector lattice, relatively uniform convergence, linear order bounded operator, orthogonally additive order bounded homogeneous polynomial.
@article{MZM_2012_91_5_a5,
     author = {Z. A. Kusraeva},
     title = {Homogeneous {Orthogonally} {Additive} {Polynomials} on {Vector} {Lattices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {704--710},
     publisher = {mathdoc},
     volume = {91},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a5/}
}
TY  - JOUR
AU  - Z. A. Kusraeva
TI  - Homogeneous Orthogonally Additive Polynomials on Vector Lattices
JO  - Matematičeskie zametki
PY  - 2012
SP  - 704
EP  - 710
VL  - 91
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a5/
LA  - ru
ID  - MZM_2012_91_5_a5
ER  - 
%0 Journal Article
%A Z. A. Kusraeva
%T Homogeneous Orthogonally Additive Polynomials on Vector Lattices
%J Matematičeskie zametki
%D 2012
%P 704-710
%V 91
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a5/
%G ru
%F MZM_2012_91_5_a5
Z. A. Kusraeva. Homogeneous Orthogonally Additive Polynomials on Vector Lattices. Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 704-710. http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a5/

[1] K. Sundaresan, “Geometry of spaces of homogeneous polynomials on Banach lattices”, Applied Geometry and Discrete Mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc., Providence, RI, 1991, 571–586 | MR | Zbl

[2] D. Pérez-García and I. Villanueva, “Orthogonally additive polynomials on spaces of continuous functions”, J. Math. Anal. Appl., 306:1 (2005), 97–105 | DOI | MR | Zbl

[3] D. Carando, S. Lassalle, I. Zalduendo, “Orthogonally additive polynomials over $C(K)$ are measures – a short proof”, Integral Equations Operator Theory, 56:4 (2006), 597–602 | DOI | MR | Zbl

[4] Y. Benyamini, S. Lassalle, J. G. Llavona, “Homogeneous orthogonally additive polynomials on Banach lattices”, Bull. London Math. Soc., 38:3 (2006), 459–469 | DOI | MR | Zbl

[5] B. Z. Vulikh, Vvedenie v teoriyu poluuporyadochennykh prostranstv, GIFML, M., 1961 | MR | Zbl

[6] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nevskii dialekt, SPb., 2004 | MR | Zbl

[7] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Pure Appl. Math., 119, Academic Press, New York, 1985 | MR | Zbl

[8] A. Kartan, Differentsialnoe ischislenie. Differentsialnye formy, Editorial URSS, M., 2004 | MR | Zbl

[9] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Birkhäuser Verlag, Basel, 2009 | MR | Zbl

[10] K. Boulabiar, G. Buskes, “Vector lattice powers: $f$-algebras and functional calculus”, Comm. Algebra, 34:4 (2006), 1435–1442 | DOI | MR | Zbl

[11] G. Buskes, A. van Rooij, “Squares of Riesz spaces”, Rocky Mountain J. Math., 31:1 (2001), 45–56 | DOI | MR | Zbl

[12] A. V. Bukhvalov, “Prilozheniya metodov teorii poryadkovo ogranichennykh operatorov k teorii operatorov v prostranstvakh $L^p$”, UMN, 38:6 (1983), 37–83 | MR | Zbl

[13] A. V. Bukhvalov, “Ob integralnom predstavlenii lineinykh operatorov”, Issledovaniya po lineinym operatoram i teorii funktsii. V, Zap. nauchn. sem. LOMI, 47, Izd-vo «Nauka», Leningrad. otd., L., 1974, 5–14 | MR | Zbl