Fourier Coefficients of Continuous Functions
Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 691-703 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that the Fourier coefficients of continuous functions with respect to classical orthogonal systems (trigonometric, Haar, and Walsh) can be estimated via the moduli of continuity of the functions. However, not all orthonormal systems possess this property. We obtain necessary and sufficient conditions on orthonormal systems such that the Fourier coefficients of continuous functions with respect to these orthonormal systems can be estimated via the moduli of continuity in a certain sense.
Keywords: orthonormal system, continuous function, modulus of continuity, Haar system
Mots-clés : Fourier coefficients, Hölder's inequality, Abel transform.
@article{MZM_2012_91_5_a4,
     author = {L. Gogoladze and V. Tsagareishvili},
     title = {Fourier {Coefficients} of {Continuous} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {691--703},
     year = {2012},
     volume = {91},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a4/}
}
TY  - JOUR
AU  - L. Gogoladze
AU  - V. Tsagareishvili
TI  - Fourier Coefficients of Continuous Functions
JO  - Matematičeskie zametki
PY  - 2012
SP  - 691
EP  - 703
VL  - 91
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a4/
LA  - ru
ID  - MZM_2012_91_5_a4
ER  - 
%0 Journal Article
%A L. Gogoladze
%A V. Tsagareishvili
%T Fourier Coefficients of Continuous Functions
%J Matematičeskie zametki
%D 2012
%P 691-703
%V 91
%N 5
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a4/
%G ru
%F MZM_2012_91_5_a4
L. Gogoladze; V. Tsagareishvili. Fourier Coefficients of Continuous Functions. Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 691-703. http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a4/

[1] A. M. Olevskii, “Ob ortogonalnykh ryadakh po polnym sistemam”, Matem. sb., 58:2 (1962), 707–748 | MR | Zbl

[2] V. Tsagareishvili, “Estimated of Fourier coefficients”, Georgian Math. J., 10:2 (2003), 363–379 | MR | Zbl

[3] A. Zigmund, Trigonometricheskie ryady, Mir, M., 1965 | MR | Zbl | Zbl

[4] B. I. Golubov, “O ryadakh Fure nepreryvnykh funktsii po sisteme Khaara”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1271–1296 | MR | Zbl

[5] N. J. Fine, “On the Walsh functions”, Trans. Amer. Math. Soc., 65 (1949), 372–414 | DOI | MR | Zbl