Fourier Coefficients of Continuous Functions
Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 691-703
Cet article a éte moissonné depuis la source Math-Net.Ru
It is well known that the Fourier coefficients of continuous functions with respect to classical orthogonal systems (trigonometric, Haar, and Walsh) can be estimated via the moduli of continuity of the functions. However, not all orthonormal systems possess this property. We obtain necessary and sufficient conditions on orthonormal systems such that the Fourier coefficients of continuous functions with respect to these orthonormal systems can be estimated via the moduli of continuity in a certain sense.
Keywords:
orthonormal system, continuous function, modulus of continuity, Haar system
Mots-clés : Fourier coefficients, Hölder's inequality, Abel transform.
Mots-clés : Fourier coefficients, Hölder's inequality, Abel transform.
@article{MZM_2012_91_5_a4,
author = {L. Gogoladze and V. Tsagareishvili},
title = {Fourier {Coefficients} of {Continuous} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {691--703},
year = {2012},
volume = {91},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a4/}
}
L. Gogoladze; V. Tsagareishvili. Fourier Coefficients of Continuous Functions. Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 691-703. http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a4/
[1] A. M. Olevskii, “Ob ortogonalnykh ryadakh po polnym sistemam”, Matem. sb., 58:2 (1962), 707–748 | MR | Zbl
[2] V. Tsagareishvili, “Estimated of Fourier coefficients”, Georgian Math. J., 10:2 (2003), 363–379 | MR | Zbl
[3] A. Zigmund, Trigonometricheskie ryady, Mir, M., 1965 | MR | Zbl | Zbl
[4] B. I. Golubov, “O ryadakh Fure nepreryvnykh funktsii po sisteme Khaara”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1271–1296 | MR | Zbl
[5] N. J. Fine, “On the Walsh functions”, Trans. Amer. Math. Soc., 65 (1949), 372–414 | DOI | MR | Zbl