On the Growth of Entire Functions with Discretely Measurable Zeros
Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 674-690
Voir la notice de l'article provenant de la source Math-Net.Ru
We solve the problem of the least possible type of entire functions of order $\rho\in(0,1)$ with positive zeros in a special class specified by certain conditions on the upper and lower averaged $\rho$-density of zeros.
Keywords:
entire function, least type of entire functions, upper (lower) density of zeros of entire functions, averaged upper density of zeros, discretely measurable sequence.
@article{MZM_2012_91_5_a3,
author = {G. G. Braichev and V. B. Sherstyukov},
title = {On the {Growth} of {Entire} {Functions} with {Discretely} {Measurable} {Zeros}},
journal = {Matemati\v{c}eskie zametki},
pages = {674--690},
publisher = {mathdoc},
volume = {91},
number = {5},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a3/}
}
G. G. Braichev; V. B. Sherstyukov. On the Growth of Entire Functions with Discretely Measurable Zeros. Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 674-690. http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a3/