Bykovskii's Theorem and a Generalization of Larcher's Theorem
Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 795-798.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: lattice, discrepancy, Korobov lattice, Bykovskii's theorem, Larcher's theorem.
@article{MZM_2012_91_5_a17,
     author = {D. M. Ushanov},
     title = {Bykovskii's {Theorem} and a {Generalization} of {Larcher's} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {795--798},
     publisher = {mathdoc},
     volume = {91},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a17/}
}
TY  - JOUR
AU  - D. M. Ushanov
TI  - Bykovskii's Theorem and a Generalization of Larcher's Theorem
JO  - Matematičeskie zametki
PY  - 2012
SP  - 795
EP  - 798
VL  - 91
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a17/
LA  - ru
ID  - MZM_2012_91_5_a17
ER  - 
%0 Journal Article
%A D. M. Ushanov
%T Bykovskii's Theorem and a Generalization of Larcher's Theorem
%J Matematičeskie zametki
%D 2012
%P 795-798
%V 91
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a17/
%G ru
%F MZM_2012_91_5_a17
D. M. Ushanov. Bykovskii's Theorem and a Generalization of Larcher's Theorem. Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 795-798. http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a17/

[1] N. M. Korobov, UMN, 22:3 (1967), 83–118 | MR | Zbl

[2] G. Larcher, Monatsh. Math., 101:2 (1986), 135–150 | DOI | MR | Zbl

[3] V. A. Bykovskii, 27th Journées Arithmétiques, Program and Abstract Book, Vilnius University, 2011, 10–11

[4] V. A. Bykovskii, “Otklonenie setok Korobova”, Izv. RAN. Ser. matem. (to appear)

[5] A. Ostrowski, Abh. Math. Sem. Hamburg, 1 (1922), 77–98 ; 249–250 | DOI | DOI | Zbl

[6] N. G. Moshchevitin, D. M. Ushanov, Unif. Distrib. Theory, 5:1 (2010), 45–52 | MR | Zbl

[7] M.-C. Chang, C. R. Math. Acad. Sci. Paris, 349:13-14 (2011), 713–718 | DOI | MR | Zbl

[8] S. V. Konyagin, IV Mezhdenarodnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya”. Aktualnye problemy, Chast 3, M., Mekh.-mat. fak-t MGU, 2002, 86–114 | MR | Zbl

[9] M. Z. Garaev, UMN, 65:4 (2010), 5–66 | MR