Approximation to the Function ~$z^{\alpha}$ by Rational Fractions in a Domain with Zero External Angle
Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 761-772.

Voir la notice de l'article provenant de la source Math-Net.Ru

Rational approximations to the function $z^{\alpha}$, $\alpha\in\mathbb{R}\setminus\mathbb{Z}$, were studied by Newman, Gonchar, Bulanov, Vyacheslavov, Andersson, Stahl, and others. The present paper deals with the order of best rational approximations to this function in a domain with zero external angle and vertex at the point $z=0$. In particular, the obtained results show that the conditions imposed on the boundary of the domain in the Jackson-type inequality proved by the author in 2001 for the best rational approximations in Smirnov spaces cannot be weakened significantly.
Keywords: best uniform rational approximation, Smirnov space, analytic function, rational function, rectifiable Jordan boundary
Mots-clés : polynomial approximation, Lavrentiev curve.
@article{MZM_2012_91_5_a11,
     author = {A. A. Pekarskii},
     title = {Approximation to the {Function} ~$z^{\alpha}$ by {Rational} {Fractions} in a {Domain} with {Zero} {External} {Angle}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {761--772},
     publisher = {mathdoc},
     volume = {91},
     number = {5},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a11/}
}
TY  - JOUR
AU  - A. A. Pekarskii
TI  - Approximation to the Function ~$z^{\alpha}$ by Rational Fractions in a Domain with Zero External Angle
JO  - Matematičeskie zametki
PY  - 2012
SP  - 761
EP  - 772
VL  - 91
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a11/
LA  - ru
ID  - MZM_2012_91_5_a11
ER  - 
%0 Journal Article
%A A. A. Pekarskii
%T Approximation to the Function ~$z^{\alpha}$ by Rational Fractions in a Domain with Zero External Angle
%J Matematičeskie zametki
%D 2012
%P 761-772
%V 91
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a11/
%G ru
%F MZM_2012_91_5_a11
A. A. Pekarskii. Approximation to the Function ~$z^{\alpha}$ by Rational Fractions in a Domain with Zero External Angle. Matematičeskie zametki, Tome 91 (2012) no. 5, pp. 761-772. http://geodesic.mathdoc.fr/item/MZM_2012_91_5_a11/

[1] G. G. Lorenz, M. v. Golitschek, Y. Makovoz, Constructive Approximation. Advanced Problems, Grundlehren Math. Wiss., 304, Springer-Verlag, Berlin, 1996 | MR | Zbl

[2] H. R. Stahl, “Best uniform rational approxition of $x^{\alpha}$ on $[0,1]$”, Acta Math., 190:2 (2003), 241–306 | DOI | MR | Zbl

[3] J.-E. Andersson, “Rational approximation to function like $x^{\alpha}$ in integral norms”, Anal. Math., 14:1 (1988), 11–25 | DOI | MR | Zbl

[4] A. A. Pekarskii, “Nailuchshie ravnomernye ratsionalnye priblizheniya funktsii Markova”, Algebra i analiz, 7:2 (1995), 121–132 | MR | Zbl

[5] A. A. Pekarskii, “Ratsionalnye priblizheniya funktsii s proizvodnymi iz prostranstva V. I. Smirnova”, Algebra i analiz, 13:2 (2001), 165–190 | MR | Zbl

[6] A. A. Pekarskii, “Prostranstva Smirnova–Soboleva i ikh vlozheniya”, Matem. sb., 194:4 (2003), 75–84 | MR | Zbl

[7] V. I. Belyi, “Sovremennye metody geometricheskoi teorii funktsii kompleksnogo peremennogo v zadachakh approksimatsii”, Algebra i analiz, 9:3 (1997), 3–40 | MR | Zbl

[8] V. V. Andrievskii, Konstruktivnoe opisanie klassov funktsii na kontinuumakh kompleksnoi ploskosti s uchetom rosta approksimatsionnykh polinomov, Preprint IM AN USSR No 83.12, Kiev, 1983

[9] A. A. Pekarskii, “Ratsionalnaya approksimatsiya stepennoi funktsii v oblasti s nulevym vneshnim uglom”, Aktualnye problemy analiza, Sb. nauchn. trudov, red. Ya. V. Radyno, V. G. Krotov, Yu. M. Vuvunikyan, GrGU, Grodno, 2009, 114–130

[10] A. A. Gonchar, “O zadachakh E. I. Zolotareva, svyazannykh s ratsionalnymi funktsiyami”, Matem. sb., 78:4 (1969), 640–654 | MR | Zbl

[11] A. A. Gonchar, “Skorost ratsionalnoi approksimatsii i svoistvo odnoznachnosti analiticheskoi funktsii v okrestnosti izolirovannoi osoboi tochki”, Matem. sb., 94:2 (1974), 265–282 | MR | Zbl

[12] P. L. Duren, Theory of $H^p$ Spaces, Pure Appl. Math., 38, Academic Press, New York, 1970 | MR | Zbl

[13] P. Kusis, Vvedenie v teoriyu prostranstv $H^p$ s prilozheniem dokazatelstva Volffa teoremy o korone, Mir, M., 1984 | MR | Zbl

[14] A. A. Pekarskii, “Nailuchshie ratsionalnye priblizheniya v kompleksnoi oblasti”, Teoriya funktsii, Materialy Vsesoyuznoi shkoly po teorii funktsii, Tr. MIAN SSSR, 190, Nauka, M., 1989, 222–233 | MR | Zbl

[15] A. A. Pekarskii, “Ob odnom integralnom predstavlenii funktsii klassa $H_p$ pri $p\leqslant 1$”, Dokl. NAN Belarusi, 49:1 (2005), 27–31 | MR | Zbl