On Unitary Transposable Matrices of Order Three
Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 563-570
Cet article a éte moissonné depuis la source Math-Net.Ru
A matrix $A \in M_n(\mathbb{C})$ is said to be unitarily transposable if $$ A^T=Q^*AQ $$ for a certain unitary matrix $Q$. Every $2\times 2$ matrix is unitarily transposable; however, for greater orders, a similar statement is false, and the general description of unitarily transposable matrices of order $n$ is at present unknown. We give such a description for matrices of order three.
Keywords:
unitary transposable matrix, unitary similarity, Specht's criterion, Schur form, persymmetric matrix, geometric multiplicity.
@article{MZM_2012_91_4_a8,
author = {Kh. D. Ikramov and A. K. Abdikalykov},
title = {On {Unitary} {Transposable} {Matrices} of {Order} {Three}},
journal = {Matemati\v{c}eskie zametki},
pages = {563--570},
year = {2012},
volume = {91},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a8/}
}
Kh. D. Ikramov; A. K. Abdikalykov. On Unitary Transposable Matrices of Order Three. Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 563-570. http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a8/
[1] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR | Zbl
[2] Kh. D. Ikramov, “Ob unitarnom podobii vzaimno transponirovannykh matrits”, Dokl. RAN, 378:5 (2001), 592–593 | MR | Zbl
[3] C. Pearcy, “A complete set of unitary invariants for operators generating finite $W^*$-algebras of type I”, Pacific J. Math., 12 (1962), 1405–1416 | MR | Zbl
[4] K. S. Sibirskii, Algebraicheskie invarianty differentsialnykh uravnenii i matrits, Shtiintsa, Kishinev, 1976 | MR | Zbl