Keywords: random vector, discrete distribution, $U$-statistics.
@article{MZM_2012_91_4_a7,
author = {A. M. Zubkov and D. O. Men'shenin},
title = {Properties of the {Sz\'ekely{\textendash}M\'ori} {Symmetry} {Criterion} {Statistics} in the {Case} of {Binary} {Vectors}},
journal = {Matemati\v{c}eskie zametki},
pages = {551--562},
year = {2012},
volume = {91},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a7/}
}
TY - JOUR AU - A. M. Zubkov AU - D. O. Men'shenin TI - Properties of the Székely–Móri Symmetry Criterion Statistics in the Case of Binary Vectors JO - Matematičeskie zametki PY - 2012 SP - 551 EP - 562 VL - 91 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a7/ LA - ru ID - MZM_2012_91_4_a7 ER -
A. M. Zubkov; D. O. Men'shenin. Properties of the Székely–Móri Symmetry Criterion Statistics in the Case of Binary Vectors. Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 551-562. http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a7/
[1] G. J. Székely, T. F. Móri, “A characteristic measure of asymmetry and its application for testing diagonal symmetry”, Comm. Statist. Theory Methods, 30:8-9 (2001), 1633–1639 | MR | Zbl
[2] G. G. Gregory, “Large sample theory for $U$-statistics and tests of fit”, Ann. Statist., 5:1 (1977), 110–123 | DOI | MR | Zbl
[3] V. S. Korolyuk, Yu. V. Borovskikh, Teoriya $U$-statistik, Naukova Dumka, Kiev, 1989 | MR | Zbl
[4] G. J. Székely, N. K. Bakirov, “Extremal probabilities for Gaussian quadratic forms”, Probab. Theory Related Fields, 126:2 (2003), 184–202 | DOI | MR | Zbl
[5] W. Hoeffding, “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19:3 (1948), 293–325 | DOI | MR | Zbl
[6] D. O. Menshenin, A. M. Zubkov, “On the Szekely–Mori asymmetry criterion statistics for binary vectors with independent components”, Austrian J. Statist., 37:1 (2008), 137–144