Properties of the Sz\'ekely--M\'ori Symmetry Criterion Statistics in the Case of Binary Vectors
Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 551-562.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of the statistics of the Székely–Móri criterion for the symmetry of a distribution in Euclidean space for the class of discrete distributions concentrated on the set of vertices of the $d$-dimensional cube. We obtain exact and asymptotic (as $d\to\infty$) formulas for the first moments of the statistic, prove limit theorems, and give examples showing how the efficiency of the criterion depends on the form of the distribution.
Keywords: Székely–Móri symmetry criterion, random vector, discrete distribution, $U$-statistics.
Mots-clés : normal distribution, limit distribution
@article{MZM_2012_91_4_a7,
     author = {A. M. Zubkov and D. O. Men'shenin},
     title = {Properties of the {Sz\'ekely--M\'ori} {Symmetry} {Criterion} {Statistics} in the {Case} of {Binary} {Vectors}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {551--562},
     publisher = {mathdoc},
     volume = {91},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a7/}
}
TY  - JOUR
AU  - A. M. Zubkov
AU  - D. O. Men'shenin
TI  - Properties of the Sz\'ekely--M\'ori Symmetry Criterion Statistics in the Case of Binary Vectors
JO  - Matematičeskie zametki
PY  - 2012
SP  - 551
EP  - 562
VL  - 91
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a7/
LA  - ru
ID  - MZM_2012_91_4_a7
ER  - 
%0 Journal Article
%A A. M. Zubkov
%A D. O. Men'shenin
%T Properties of the Sz\'ekely--M\'ori Symmetry Criterion Statistics in the Case of Binary Vectors
%J Matematičeskie zametki
%D 2012
%P 551-562
%V 91
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a7/
%G ru
%F MZM_2012_91_4_a7
A. M. Zubkov; D. O. Men'shenin. Properties of the Sz\'ekely--M\'ori Symmetry Criterion Statistics in the Case of Binary Vectors. Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 551-562. http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a7/

[1] G. J. Székely, T. F. Móri, “A characteristic measure of asymmetry and its application for testing diagonal symmetry”, Comm. Statist. Theory Methods, 30:8-9 (2001), 1633–1639 | MR | Zbl

[2] G. G. Gregory, “Large sample theory for $U$-statistics and tests of fit”, Ann. Statist., 5:1 (1977), 110–123 | DOI | MR | Zbl

[3] V. S. Korolyuk, Yu. V. Borovskikh, Teoriya $U$-statistik, Naukova Dumka, Kiev, 1989 | MR | Zbl

[4] G. J. Székely, N. K. Bakirov, “Extremal probabilities for Gaussian quadratic forms”, Probab. Theory Related Fields, 126:2 (2003), 184–202 | DOI | MR | Zbl

[5] W. Hoeffding, “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19:3 (1948), 293–325 | DOI | MR | Zbl

[6] D. O. Menshenin, A. M. Zubkov, “On the Szekely–Mori asymmetry criterion statistics for binary vectors with independent components”, Austrian J. Statist., 37:1 (2008), 137–144