Polynomials in One Variable and Ranks of Certain Tangent Maps
Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 539-550
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the map that sends a monic degree $n$ complex polynomial $f(x)$ without multiple roots to the collection of $n$ values of its derivative at the roots of $f(x)$. We give an answer to a question posed by Yu. S. Ilyashenko.
Mots-clés :
complex polynomial in one variable, tangent map, multipliers.
Keywords: fixed points
Keywords: fixed points
@article{MZM_2012_91_4_a6,
author = {Yu. G. Zarhin},
title = {Polynomials in {One} {Variable} and {Ranks} of {Certain} {Tangent} {Maps}},
journal = {Matemati\v{c}eskie zametki},
pages = {539--550},
year = {2012},
volume = {91},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a6/}
}
Yu. G. Zarhin. Polynomials in One Variable and Ranks of Certain Tangent Maps. Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 539-550. http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a6/
[1] E. Rees, On a paper by Y. G. Zarhin, arXiv: math.AG/1105.4156
[2] G. T. Buzzard, S. L. Hruska, Yu. Ilyashenko, “Kupka–Smale theorem for polynomial automorphisms of $\mathbb{C}^2 $ and persistence of heteroclinic intersections”, Invent. Math., 161:1 (2005), 45–89 | DOI | MR | Zbl
[3] I. Gorbovitskii, Netipichnost gomoklinicheskikh kasanii dlya polinomialnykh avtomorfizmov $\mathbb{C}^2$, sokhranyayuschikh ob'em, Diplomnaya rabota, MGU, M., 2006
[4] I. R. Shafarevich, Osnovy algebraicheskoi geometrii, MTsNMO, M., 2007