The Matrix Version of Hamburger's Theorem
Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 522-529.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for the Stieltjes moment problem to have a unique solution and for the Hamburger moment problem with the same moments to have infinitely many solutions were obtained in Hamburger's papers on the classical moment problem. In this paper, we obtain an analog of Hamburger's criterion for the matrix moment problem.
Keywords: Hamburger moment problem, Hermitian matrix, matrix function, block matrix.
Mots-clés : Stieltjes moment problem
@article{MZM_2012_91_4_a4,
     author = {Yu. M. Dyukarev and A. E. Choque Rivero},
     title = {The {Matrix} {Version} of {Hamburger's} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {522--529},
     publisher = {mathdoc},
     volume = {91},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a4/}
}
TY  - JOUR
AU  - Yu. M. Dyukarev
AU  - A. E. Choque Rivero
TI  - The Matrix Version of Hamburger's Theorem
JO  - Matematičeskie zametki
PY  - 2012
SP  - 522
EP  - 529
VL  - 91
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a4/
LA  - ru
ID  - MZM_2012_91_4_a4
ER  - 
%0 Journal Article
%A Yu. M. Dyukarev
%A A. E. Choque Rivero
%T The Matrix Version of Hamburger's Theorem
%J Matematičeskie zametki
%D 2012
%P 522-529
%V 91
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a4/
%G ru
%F MZM_2012_91_4_a4
Yu. M. Dyukarev; A. E. Choque Rivero. The Matrix Version of Hamburger's Theorem. Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 522-529. http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a4/

[1] T.-J. Stieltjes, “Recherches sur les fractions continues”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 8:4 (1894), J1–J122 | MR | Zbl

[2] T.-J. Stieltjes, “Recherches sur les fractions continues”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 9:1 (1895), A1–A47 | MR | Zbl

[3] H. Hamburger, “Über eine Erweiterung des Stieltjesschen Momentenproblems”, Math. Ann., 81:2-4 (1920), 235–319 | DOI | MR | Zbl

[4] H. Hamburger, “Über eine Erweiterung des Stieltjesschen Momentenproblems”, Math. Ann., 82:1-2 (1921), 120–164 | DOI | MR | Zbl

[5] H. Hamburger, “Über eine Erweiterung des Stieltjesschen Momentenproblems”, Math. Ann., 82:3-4 (1921), 168–187 | DOI | MR | Zbl

[6] I. V. Kovalishina, V. P. Potapov, “Indefinitnaya metrika v probleme Nevanlinny–Pika”, Dokl. AN ArmSSR, 59:1 (1974), 17–22 | MR | Zbl

[7] V. P. Potapov, “Drobno-lineinye preobrazovaniya matrits”, Issledovaniya po teorii operatorov i ikh prilozheniyam, Sb. nauch. tr., Naukova dumka, Kiev, 1979, 75–97 | MR | Zbl

[8] I. V. Kovalishina, V. P. Potapov, “Radiusy kruga Veilya v matrichnoi probleme Nevanlinny–Pika”, Teoriya operatorov v funktsionalnykh prostranstvakh i ee prilozheniya, Sb. nauch. tr., Naukova dumka, Kiev, 1981, 25–49 | MR | Zbl

[9] V. P. Potapov, “K teorii matrichnykh krugov Veilya”, Funktsionalnyi analiz i prikladnaya matematika, Sb. nauch. tr., Naukova dumka, Kiev, 1982, 113–121 | MR

[10] I. V. Kovalishina, “Analiticheskaya teoriya odnogo klassa interpolyatsionnykh zadach”, Izv. AN SSSR. Ser. matem., 47:3 (1983), 455–497 | MR | Zbl

[11] Yu. M. Dyukarev, “O kriteriyakh neopredelennosti matrichnoi problemy momentov Stiltesa”, Matem. zametki, 75:1 (2004), 71–88 | MR | Zbl

[12] M. G. Krein, M. A. Krasnoselskii, “Osnovnye teoremy o rasshirenii ermitovykh operatorov i nekotorye ikh primeneniya k teorii ortogonalnykh polinomov i probleme momentov”, UMN, 2:3 (1947), 60–106 | MR