On a Class of Nonlinear Schr\"{o}dinger Equations with Nonnegative Potentials in Two Space Dimensions
Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 515-521

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper discusses a class of critical nonlinear Schrödinger equations which are closely related to several applications, in particular to Bose-Einstein condensates with attractive two-body interactions. By constructing a constrained variational problem and considering the so-called invariant manifolds of the evolution flow, the authors derive a sharp criterion for blow-up and global existence of the solutions.
Keywords: nonlinear Schrödinger equation, blow-up, nonnegative potentials, constrained variational problem.
Mots-clés : global existence
@article{MZM_2012_91_4_a3,
     author = {Jian Zhang and Ji Shu},
     title = {On a {Class} of {Nonlinear} {Schr\"{o}dinger} {Equations} with {Nonnegative} {Potentials} in {Two} {Space} {Dimensions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {515--521},
     publisher = {mathdoc},
     volume = {91},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a3/}
}
TY  - JOUR
AU  - Jian Zhang
AU  - Ji Shu
TI  - On a Class of Nonlinear Schr\"{o}dinger Equations with Nonnegative Potentials in Two Space Dimensions
JO  - Matematičeskie zametki
PY  - 2012
SP  - 515
EP  - 521
VL  - 91
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a3/
LA  - ru
ID  - MZM_2012_91_4_a3
ER  - 
%0 Journal Article
%A Jian Zhang
%A Ji Shu
%T On a Class of Nonlinear Schr\"{o}dinger Equations with Nonnegative Potentials in Two Space Dimensions
%J Matematičeskie zametki
%D 2012
%P 515-521
%V 91
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a3/
%G ru
%F MZM_2012_91_4_a3
Jian Zhang; Ji Shu. On a Class of Nonlinear Schr\"{o}dinger Equations with Nonnegative Potentials in Two Space Dimensions. Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 515-521. http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a3/