On a Class of Nonlinear Schr\"{o}dinger Equations with Nonnegative Potentials in Two Space Dimensions
Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 515-521.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper discusses a class of critical nonlinear Schrödinger equations which are closely related to several applications, in particular to Bose-Einstein condensates with attractive two-body interactions. By constructing a constrained variational problem and considering the so-called invariant manifolds of the evolution flow, the authors derive a sharp criterion for blow-up and global existence of the solutions.
Keywords: nonlinear Schrödinger equation, blow-up, nonnegative potentials, constrained variational problem.
Mots-clés : global existence
@article{MZM_2012_91_4_a3,
     author = {Jian Zhang and Ji Shu},
     title = {On a {Class} of {Nonlinear} {Schr\"{o}dinger} {Equations} with {Nonnegative} {Potentials} in {Two} {Space} {Dimensions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {515--521},
     publisher = {mathdoc},
     volume = {91},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a3/}
}
TY  - JOUR
AU  - Jian Zhang
AU  - Ji Shu
TI  - On a Class of Nonlinear Schr\"{o}dinger Equations with Nonnegative Potentials in Two Space Dimensions
JO  - Matematičeskie zametki
PY  - 2012
SP  - 515
EP  - 521
VL  - 91
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a3/
LA  - ru
ID  - MZM_2012_91_4_a3
ER  - 
%0 Journal Article
%A Jian Zhang
%A Ji Shu
%T On a Class of Nonlinear Schr\"{o}dinger Equations with Nonnegative Potentials in Two Space Dimensions
%J Matematičeskie zametki
%D 2012
%P 515-521
%V 91
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a3/
%G ru
%F MZM_2012_91_4_a3
Jian Zhang; Ji Shu. On a Class of Nonlinear Schr\"{o}dinger Equations with Nonnegative Potentials in Two Space Dimensions. Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 515-521. http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a3/

[1] T. Tsurumi, M. Wadati, “Collapse of wavefunctions in multi-dimensional nonlinear Schrödinger equations under harmonic potential”, J. Phys. Soc. Jpn., 66 (1997), 3031–3034 | DOI

[2] J. Ginibre, G. Velo, “On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case”, J. Funct. Anal., 32:1 (1979), 1–32 | DOI

[3] T. Kato, “On nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Phys. Théor., 46:1 (1987), 113–129 | MR | Zbl

[4] R. T. Glassey, “On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations”, J. Math. Phys., 18:9 (1977), 1794–1797 | DOI | MR | Zbl

[5] T. Ogawa, Y. Tsutsumi, “Blow-up of $H^{1}$ solution for the nonlinear Schrödinger equation”, J. Differential Equations, 92:2 (1991), 317–330 | DOI | MR | Zbl

[6] T. Ogawa, Y. Tsutsumi, “Blow-up of $H^1$ solution for the nonlinear Schrödinger equation with critic power nonlinearity”, Proc. Amer. Math. Soc., 111:2 (1991), 487–496 | MR | Zbl

[7] H. Berestycki, T. Cazenave, “Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéarires”, C. R. Acad. Sci. Paris Sér. I Math., 293:9 (1981), 489–492 | MR | Zbl

[8] M. I. Weinstein, “Nonlinear Schrödinger equations and sharp interpolations estimates”, Comm. Math. Phys., 87:4 (1983), 567–576 | DOI | MR | Zbl

[9] J. Zhang, “Sharp conditions of global existence for nonlinear Schrödinger and Klein–Gordon equations”, Nonlinear Anal. Theory, Methods Appl., 48:2 (2002), 191–207 | DOI | MR | Zbl

[10] H. Nawa, ““Mass concentration” phenomenon for the nonlinear Schrödinger equation with critical power nonlinearity”, Funkcial. Ekvac., 35:1 (1992), 1–18 | MR | Zbl

[11] H. Nawa, “Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power”, Comm. Pure Appl. Math., 52:2 (1999), 193–270 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[12] F. Merle, “Determinination of blow-up solutions with minimal mass for nonlinear Schrödinger equation with critical power”, Duke Math. J., 69:2 (1993), 427–454 | DOI | MR | Zbl

[13] F. Merle, P. Raphael, “On universality of blowup profile for $L^2$ critical nonlinear Schrödinger equation”, Invent. Math., 156:3 (2004), 565–672 | DOI | MR | Zbl

[14] Y. G. Oh, “Cauchy problem and Ehrenfest's law of nonlinear Schrödinger equations with potentials”, J. Differential Equations, 81:2 (1989), 255–274 | DOI | MR | Zbl

[15] J. Zhang, “Stability of attractive Bose–Einstein condensates”, J. Statist. Phys., 101:3-4 (2000), 731–746 | DOI | MR | Zbl

[16] J. Zhang, “Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials”, Z. Angew. Math. Phys., 51:3 (2000), 498–503 | DOI | MR | Zbl

[17] J. Zhang, “Sharp threshold of blowup and global existence in nonlinear Schrödinger equations under a harmonic potential”, Comm. Partial Differential Equations, 30:10 (2005), 1429–1443 | DOI | MR | Zbl

[18] R. Carles, “Critical nonlinear Schrödinger equationswith and without harmonic potential”, Math. Models Methods Appl. Sci., 12:10 (2002), 1513–1523 | DOI | MR | Zbl

[19] R. Carles, “Remark on nonlinear Schrödinger equations with harmonic potential”, Ann. Henri Poincaré, 3:4 (2002), 757–772 | DOI | MR | Zbl

[20] C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Appl. Math. Sci., 139, SpringerVerlag, New York, 1999 | MR | Zbl

[21] L. E. Payne, D. H. Sattinger, “Saddle points and instability of nonlinear hyperbolic equations”, Israel J. Math., 22:3-4 (1975), 273–303 | DOI | MR

[22] H. A. Levine, “Instability and non-existence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathscr F(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | MR | Zbl

[23] T. Cazenave, An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, 26, second edition, IM-UFRJ, Rio de Janeiro, 1993

[24] Y. Tsutsumi, J. Zhang, “Instability of optical solitons for two-wave interaction model in cubic nonlinear media”, Adv. Math. Sci. Appl., 8:2 (1998), 691–713 | MR | Zbl