Spherical Jump of a Function and the Bochner--Riesz Means of Conjugate Multiple Fourier Series and Fourier Integrals
Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 506-514.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of spherical jump of a function of several variables at a given point with respect to a homogeneous harmonic polynomial. Here, if the function is integrable over spheres of sufficiently small radius centered at the given point and is continuous at this point, then its spherical jump at this point with respect to any homogeneous harmonic polynomial, distinct from a constant, is zero. Under certain conditions on a function of $n$ variables ($n \ge 2$) at a point where the spherical jump of this function with respect to a homogeneous harmonic polynomial $P$ is distinct from zero, we calculate the first term of the asymptotics of the spherical Bochner–Riesz means of the critical order $(n-1)/2$ of the series (integral) conjugate to the $n$-multiple Fourier series (integral) of this function with respect to the Riesz-type kernel generated by the polynomial $P$. This first term of the asymptotics contains the spherical jump of the function as a multiplicative constant.
Keywords: spherical jump of a function, Bochner–Riesz mean, multiple Fourier series, Fourier integral, Riesz-type kernel.
Mots-clés : harmonic polynomial
@article{MZM_2012_91_4_a2,
     author = {B. I. Golubov},
     title = {Spherical {Jump} of a {Function} and the {Bochner--Riesz} {Means} of {Conjugate} {Multiple} {Fourier} {Series} and {Fourier} {Integrals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {506--514},
     publisher = {mathdoc},
     volume = {91},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a2/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - Spherical Jump of a Function and the Bochner--Riesz Means of Conjugate Multiple Fourier Series and Fourier Integrals
JO  - Matematičeskie zametki
PY  - 2012
SP  - 506
EP  - 514
VL  - 91
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a2/
LA  - ru
ID  - MZM_2012_91_4_a2
ER  - 
%0 Journal Article
%A B. I. Golubov
%T Spherical Jump of a Function and the Bochner--Riesz Means of Conjugate Multiple Fourier Series and Fourier Integrals
%J Matematičeskie zametki
%D 2012
%P 506-514
%V 91
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a2/
%G ru
%F MZM_2012_91_4_a2
B. I. Golubov. Spherical Jump of a Function and the Bochner--Riesz Means of Conjugate Multiple Fourier Series and Fourier Integrals. Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 506-514. http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a2/

[1] F. Lukacs, “Über die Bestimmung des Sprunges einer Funktion aus ihrer Fourierreihe”, J. Reine Angew. Math., 150 (1920), 107–112 | Zbl

[2] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[3] B. I. Golubov, “Kratnye ryady i integraly Fure”, Itogi nauki i tekhn. Ser. Mat. anal., 19, VINITI, M., 1982, 3–54 | MR | Zbl

[4] A. P. Calderón, A. Zygmund, “Singular integrals and periodic functions”, Studia Math., 14 (1954), 249–271 | MR | Zbl

[5] A. P. Calderon, A. Zygmund, “On the existence of certain singular integrals”, Acta Math., 88:1-2 (1952), 85–139 | DOI | MR | Zbl

[6] S. Bochner, “Theta relations with spherical harmonics”, Proc. Nat. Acad. Sci. U.S.A., 37:12 (1951), 804–808 | DOI | MR | Zbl

[7] Chao Ping Chang, On Certain Exponential Sums Arising in Conjugate Multiple Fourier Series, Ph.D. Thesis, The University of Chicago, Chicago, IL, 1964 | MR

[8] G. E. Lippman, “Spherical summability of conjugate multiple Fourier series and integrals at the critical index”, SIAM J. Math. Anal., 4:4 (1973), 681–695 | DOI | MR | Zbl