$K$-Trivial Structures on Fano Complete Intersections
Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 608-616

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any fiber space structure into varieties of Kodaira dimension zero on a generic Fano complete intersection of index 1 and of dimension $M$ in $\mathbb{P}^{M+k}$ is a pencil of hyperplane sections provided that $M\geqslant 2k+1$. The $K$-trivial structures on the varieties with a pencil of Fano complete intersections are described.
Keywords: Fano complete intersection, $K$-trivial structure, pencil of hyperplane sections.
@article{MZM_2012_91_4_a12,
     author = {A. V. Pukhlikov},
     title = {$K${-Trivial} {Structures} on {Fano} {Complete} {Intersections}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {608--616},
     publisher = {mathdoc},
     volume = {91},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a12/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - $K$-Trivial Structures on Fano Complete Intersections
JO  - Matematičeskie zametki
PY  - 2012
SP  - 608
EP  - 616
VL  - 91
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a12/
LA  - ru
ID  - MZM_2012_91_4_a12
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T $K$-Trivial Structures on Fano Complete Intersections
%J Matematičeskie zametki
%D 2012
%P 608-616
%V 91
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a12/
%G ru
%F MZM_2012_91_4_a12
A. V. Pukhlikov. $K$-Trivial Structures on Fano Complete Intersections. Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 608-616. http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a12/