Interior Points in the Erd\H{o}s--Szekeres Theorems
Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 578-596.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to selected problems of combinatorial geometry.
Keywords: Erdős–Szekeres problems in combinatorial geometry, $n$-gon, Horton set, convex polygonal line (cup, associated points.
Mots-clés : cap)
@article{MZM_2012_91_4_a10,
     author = {V. A. Koshelev},
     title = {Interior {Points} in the {Erd\H{o}s--Szekeres} {Theorems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {578--596},
     publisher = {mathdoc},
     volume = {91},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a10/}
}
TY  - JOUR
AU  - V. A. Koshelev
TI  - Interior Points in the Erd\H{o}s--Szekeres Theorems
JO  - Matematičeskie zametki
PY  - 2012
SP  - 578
EP  - 596
VL  - 91
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a10/
LA  - ru
ID  - MZM_2012_91_4_a10
ER  - 
%0 Journal Article
%A V. A. Koshelev
%T Interior Points in the Erd\H{o}s--Szekeres Theorems
%J Matematičeskie zametki
%D 2012
%P 578-596
%V 91
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a10/
%G ru
%F MZM_2012_91_4_a10
V. A. Koshelev. Interior Points in the Erd\H{o}s--Szekeres Theorems. Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 578-596. http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a10/

[1] P. Erdős, G. Szekeres, “A combinatorial problem in geometry”, Compositio Math., 2 (1935), 463–470 | MR | Zbl

[2] P. Erdős, G. Szekeres, “On some extremum problems in elementary geometry”, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 3–4 (1961), 53–62 | MR | Zbl

[3] P. Erdős, “Some more problems on elementary geometry”, Austral. Math. Soc. Gaz., 5:2 (1978), 52–54 | MR | Zbl

[4] W. Morris, V. Soltan, “The Erdős–Szekeres problem on points in convex position – a survey”, Bull. Amer. Math. Soc. (N.S.), 37:4 (2000), 437–458 | DOI | MR | Zbl

[5] F. P. Ramsey, “On a problem of formal logic”, Proc. London Math. Soc. (2), 30 (1930), 264–286 | DOI | Zbl

[6] R. L. Graham, B. L. Rothschild, J. H. Spencer, Ramsey Theory, Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley Sons, New York, 1990 | MR | Zbl

[7] M. Kholl, Kombinatorika, Mir, M., 1970 | MR | Zbl

[8] G. Szekeres, L. Peters, “Computer solution to the $17$-point Erdős–Szekeres problem”, ANZIAM J., 48:2 (2006), 151–164 | DOI | MR | Zbl

[9] G. Tóth, P. Valtr, “The Erdős–Szekeres theorem: upper bounds and related results”, Combinatorial and Computational Geometry, Math. Sci. Res. Inst. Publ., 52, Cambridge Univ. Press, Cambridge, 2005, 557–568 | MR | Zbl

[10] H. Harborth, “Konvexe Fünfecke in ebenen Punktmengen”, Elem. Math., 33:5 (1978), 116–118 | MR | Zbl

[11] M. Overmars, “Finding sets of points without empty convex $6$-gons”, Discrete Comput. Geom., 29:1 (2003), 153–158 | MR | Zbl

[12] V. A. Koshelev, “Zadacha Erdesha–Sekeresha o pustykh shestiugolnikakh na ploskosti”, Model. i analiz inform. sistem., 16:2 (2009), 22–74

[13] J. D. Horton, “Sets with no empty convex $7$-gons”, Canad. Math. Bull., 26:4 (1983), 482–484 | DOI | MR | Zbl

[14] B. Kh. Sendov, “Obyazatelnye konfiguratsii tochek na ploskosti”, Fundament. i prikl. matem., 1:2 (1995), 491–516 | MR | Zbl

[15] H. Nyklová, “Almost empty polygons”, Studia Sci. Math. Hungar., 40:3 (2003), 269–286 | DOI | MR | Zbl

[16] V. A. Koshelev, “Pochti pustye shestiugolniki”, Fundament. i prikl. matem., 14:6 (2008), 91–120 | MR