Tensor Products as Induced Representations: The Case of Finite $\mathrm{GL}(3)$
Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 483-494
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the tensor products of two irreducible linear complex representations of the group $G=\mathrm{GL}(3,\mathbb F_q)$ in terms of induced representations by linear characters of maximal tori and also in terms of Gelfand–Graev representations. Our results include MacDonald's conjectures for $G$ and are extensions to $G$ of finite counterparts to classical results on tensor products of principal series as well as holomorphic and antiholomorphic representations of the group $\mathrm{SL}(2,\mathbb R)$; besides, they provide an easy way to decompose these tensor products with the help of Frobenius reciprocity. We also state some conjectures for the general case of $\mathrm{GL}(n,\mathbb F_q)$.
Keywords:
tensor products decomposition, irreducible representation of the general linear groups over finite fields, induced representations.
Mots-clés : Clebsch–Gordan coefficients
Mots-clés : Clebsch–Gordan coefficients
@article{MZM_2012_91_4_a0,
author = {L. Aburto-Hageman and J. Pantoja and J. Soto-Andrade},
title = {Tensor {Products} as {Induced} {Representations:} {The} {Case} of {Finite} $\mathrm{GL}(3)$},
journal = {Matemati\v{c}eskie zametki},
pages = {483--494},
publisher = {mathdoc},
volume = {91},
number = {4},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a0/}
}
TY - JOUR
AU - L. Aburto-Hageman
AU - J. Pantoja
AU - J. Soto-Andrade
TI - Tensor Products as Induced Representations: The Case of Finite $\mathrm{GL}(3)$
JO - Matematičeskie zametki
PY - 2012
SP - 483
EP - 494
VL - 91
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a0/
LA - ru
ID - MZM_2012_91_4_a0
ER -
%0 Journal Article
%A L. Aburto-Hageman
%A J. Pantoja
%A J. Soto-Andrade
%T Tensor Products as Induced Representations: The Case of Finite $\mathrm{GL}(3)$
%J Matematičeskie zametki
%D 2012
%P 483-494
%V 91
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a0/
%G ru
%F MZM_2012_91_4_a0
L. Aburto-Hageman; J. Pantoja; J. Soto-Andrade. Tensor Products as Induced Representations: The Case of Finite $\mathrm{GL}(3)$. Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 483-494. http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a0/