Tensor Products as Induced Representations: The Case of Finite $\mathrm{GL}(3)$
Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 483-494.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the tensor products of two irreducible linear complex representations of the group $G=\mathrm{GL}(3,\mathbb F_q)$ in terms of induced representations by linear characters of maximal tori and also in terms of Gelfand–Graev representations. Our results include MacDonald's conjectures for $G$ and are extensions to $G$ of finite counterparts to classical results on tensor products of principal series as well as holomorphic and antiholomorphic representations of the group $\mathrm{SL}(2,\mathbb R)$; besides, they provide an easy way to decompose these tensor products with the help of Frobenius reciprocity. We also state some conjectures for the general case of $\mathrm{GL}(n,\mathbb F_q)$.
Keywords: tensor products decomposition, irreducible representation of the general linear groups over finite fields, induced representations.
Mots-clés : Clebsch–Gordan coefficients
@article{MZM_2012_91_4_a0,
     author = {L. Aburto-Hageman and J. Pantoja and J. Soto-Andrade},
     title = {Tensor {Products} as {Induced} {Representations:} {The} {Case} of {Finite} $\mathrm{GL}(3)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--494},
     publisher = {mathdoc},
     volume = {91},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a0/}
}
TY  - JOUR
AU  - L. Aburto-Hageman
AU  - J. Pantoja
AU  - J. Soto-Andrade
TI  - Tensor Products as Induced Representations: The Case of Finite $\mathrm{GL}(3)$
JO  - Matematičeskie zametki
PY  - 2012
SP  - 483
EP  - 494
VL  - 91
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a0/
LA  - ru
ID  - MZM_2012_91_4_a0
ER  - 
%0 Journal Article
%A L. Aburto-Hageman
%A J. Pantoja
%A J. Soto-Andrade
%T Tensor Products as Induced Representations: The Case of Finite $\mathrm{GL}(3)$
%J Matematičeskie zametki
%D 2012
%P 483-494
%V 91
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a0/
%G ru
%F MZM_2012_91_4_a0
L. Aburto-Hageman; J. Pantoja; J. Soto-Andrade. Tensor Products as Induced Representations: The Case of Finite $\mathrm{GL}(3)$. Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 483-494. http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a0/

[1] H. Weyl, The Theory of Groups and Quantum Mechanics, Dover Publ., New York, 1950

[2] A. C. Kable, N. Sanat, “The exterior and symmetric square of the reaection representation of $A_n(q)$ and $D_n(q)$”, J. Algebra, 288:2 (2005), 409–444 | DOI | MR | Zbl

[3] W. Fulton, J. Harris, Representation Theory. A First Course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991 | MR | Zbl

[4] F. L. Williams, “Tensor Products of Principal Series Representations. Reduction of Tensor Products of Principal Peries. Representations of Complex Semisimple Lie Groups”, Lecture Notes in Math., 358, Springer-Verlag, Berlin, 1973 | DOI | MR | Zbl

[5] L. Aburto-Hageman, J. Pantoja, “Tensor products of irreducible representations of the groups $\mathrm{GL}(2,k)$ and $\mathrm{SL}(2,k)$, $k$ a finite field”, Comm. Algebra, 28:5 (2000), 2507–2514 | DOI | MR | Zbl

[6] C. Asmuth, J. Repka, “Tensor products for $SL_2(K)$. II. Supercuspidal representations”, Pacific J. Math., 97:1 (1981), 1–18 | MR | Zbl

[7] C. Asmuth, J. Repka, “Tensor products for $SL_2(K)$. I. Complementary series and the special representation”, Pacific J. Math., 97:2 (1981), 271–282 | MR | Zbl

[8] R. P. Martin, “Tensor products for $\mathrm{SL}(2,k)$”, Trans. Amer. Math. Soc., 239 (1978), 197–211 | MR | Zbl

[9] R. P. Martin, “On the decomposition of tensor products of principal series representations for real-rank one semisimple groups”, Trans. Amer. Math. Soc., 201 (1975), 177–211 | DOI | MR | Zbl

[10] R. P. Martin, “Tensor products for the de Sitter group”, Trans. Amer. Math. Soc., 284:2 (1984), 795–814 | MR | Zbl

[11] D. Prasad, “Trilinear forms for representations of $\mathrm{GL}(2)$ and local $\varepsilon$-factors”, Compositio Math., 75:1 (1990), 1–46 | MR | Zbl

[12] L. Pukánszky, “On the Kronecker products of irreducible representations of the $2\times 2$ real unimodular group. I”, Trans. Amer. Math. Soc., 100 (1961), 116–152 | DOI | MR | Zbl

[13] L. Pukánszky, “On the Kronecker product of irreducible unitary representations of the inhomogeneous Lorentz group”, J. Math. Mech., 10 (1961), 475–491 | MR | Zbl

[14] J. Repka, “Tensor products of unitary representations of $\mathrm{SL}_2(\mathbb R)$”, Amer. J. Math., 100:4 (1978), 747–774 | DOI | MR | Zbl

[15] G. Rideau, “Sur la réduction du produit tensoriel des représentations de la série discrete de $\mathrm{SL}(2,\mathbb R)$”, Ann. Inst. H. Poincaré Sect. A (N.S.), 4 (1966), 67–76 | MR | Zbl

[16] G. W. Mackey, “Induced representations of locally compact groups. I”, Ann. of Math. (2), 55 (1952), 101–139 | DOI | MR | Zbl

[17] G. W. Mackey, “Induced representations of locally compact groups. II. The Frobenius reciprocity theorem”, Ann. of Math. (2), 58 (1953), 193–221 | DOI | MR | Zbl

[18] P. Deligne, G. Lusztig, “Representations of reductive groups over finite fields”, Ann. of Math. (2), 103:1 (1976), 103–161 | DOI | MR | Zbl

[19] A. Guichardet, J. Soto-Andrade, Produits Tensoriel et Representations Induites, Preprint, 1990

[20] J. Soto-Andrade, J. Vargas, “Twisted spherical functions on the finite Poincaré upper half-plane”, J. Algebra, 248:2 (2002), 724–746 | DOI | MR | Zbl

[21] A. C. Kable, “Legendre sums, Soto-Andrade sums and Kloosterman sums”, Pacific J. Math., 206:1 (2002), 139–157 | DOI | MR | Zbl

[22] M. Tsuchikawa, “The Plancherel transform on $\mathrm{SL}_2(k)$ and its applications to the decomposition of tensor products of irreducible representations”, J. Math. Kyoto Univ., 22:3 (1982/83), 369–433 | MR | Zbl

[23] R. Steinberg, “The representations of $\mathrm{GL}(3,q)$, $\mathrm{GL}(4,q)$, $\mathrm{PGL}(3,q)$ and $\mathrm{PGL}(4,q)$”, Canad. J. Math., 3 (1951), 225–235 | DOI | MR | Zbl