Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2012_91_4_a0, author = {L. Aburto-Hageman and J. Pantoja and J. Soto-Andrade}, title = {Tensor {Products} as {Induced} {Representations:} {The} {Case} of {Finite} $\mathrm{GL}(3)$}, journal = {Matemati\v{c}eskie zametki}, pages = {483--494}, publisher = {mathdoc}, volume = {91}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a0/} }
TY - JOUR AU - L. Aburto-Hageman AU - J. Pantoja AU - J. Soto-Andrade TI - Tensor Products as Induced Representations: The Case of Finite $\mathrm{GL}(3)$ JO - Matematičeskie zametki PY - 2012 SP - 483 EP - 494 VL - 91 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a0/ LA - ru ID - MZM_2012_91_4_a0 ER -
%0 Journal Article %A L. Aburto-Hageman %A J. Pantoja %A J. Soto-Andrade %T Tensor Products as Induced Representations: The Case of Finite $\mathrm{GL}(3)$ %J Matematičeskie zametki %D 2012 %P 483-494 %V 91 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a0/ %G ru %F MZM_2012_91_4_a0
L. Aburto-Hageman; J. Pantoja; J. Soto-Andrade. Tensor Products as Induced Representations: The Case of Finite $\mathrm{GL}(3)$. Matematičeskie zametki, Tome 91 (2012) no. 4, pp. 483-494. http://geodesic.mathdoc.fr/item/MZM_2012_91_4_a0/
[1] H. Weyl, The Theory of Groups and Quantum Mechanics, Dover Publ., New York, 1950
[2] A. C. Kable, N. Sanat, “The exterior and symmetric square of the reaection representation of $A_n(q)$ and $D_n(q)$”, J. Algebra, 288:2 (2005), 409–444 | DOI | MR | Zbl
[3] W. Fulton, J. Harris, Representation Theory. A First Course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991 | MR | Zbl
[4] F. L. Williams, “Tensor Products of Principal Series Representations. Reduction of Tensor Products of Principal Peries. Representations of Complex Semisimple Lie Groups”, Lecture Notes in Math., 358, Springer-Verlag, Berlin, 1973 | DOI | MR | Zbl
[5] L. Aburto-Hageman, J. Pantoja, “Tensor products of irreducible representations of the groups $\mathrm{GL}(2,k)$ and $\mathrm{SL}(2,k)$, $k$ a finite field”, Comm. Algebra, 28:5 (2000), 2507–2514 | DOI | MR | Zbl
[6] C. Asmuth, J. Repka, “Tensor products for $SL_2(K)$. II. Supercuspidal representations”, Pacific J. Math., 97:1 (1981), 1–18 | MR | Zbl
[7] C. Asmuth, J. Repka, “Tensor products for $SL_2(K)$. I. Complementary series and the special representation”, Pacific J. Math., 97:2 (1981), 271–282 | MR | Zbl
[8] R. P. Martin, “Tensor products for $\mathrm{SL}(2,k)$”, Trans. Amer. Math. Soc., 239 (1978), 197–211 | MR | Zbl
[9] R. P. Martin, “On the decomposition of tensor products of principal series representations for real-rank one semisimple groups”, Trans. Amer. Math. Soc., 201 (1975), 177–211 | DOI | MR | Zbl
[10] R. P. Martin, “Tensor products for the de Sitter group”, Trans. Amer. Math. Soc., 284:2 (1984), 795–814 | MR | Zbl
[11] D. Prasad, “Trilinear forms for representations of $\mathrm{GL}(2)$ and local $\varepsilon$-factors”, Compositio Math., 75:1 (1990), 1–46 | MR | Zbl
[12] L. Pukánszky, “On the Kronecker products of irreducible representations of the $2\times 2$ real unimodular group. I”, Trans. Amer. Math. Soc., 100 (1961), 116–152 | DOI | MR | Zbl
[13] L. Pukánszky, “On the Kronecker product of irreducible unitary representations of the inhomogeneous Lorentz group”, J. Math. Mech., 10 (1961), 475–491 | MR | Zbl
[14] J. Repka, “Tensor products of unitary representations of $\mathrm{SL}_2(\mathbb R)$”, Amer. J. Math., 100:4 (1978), 747–774 | DOI | MR | Zbl
[15] G. Rideau, “Sur la réduction du produit tensoriel des représentations de la série discrete de $\mathrm{SL}(2,\mathbb R)$”, Ann. Inst. H. Poincaré Sect. A (N.S.), 4 (1966), 67–76 | MR | Zbl
[16] G. W. Mackey, “Induced representations of locally compact groups. I”, Ann. of Math. (2), 55 (1952), 101–139 | DOI | MR | Zbl
[17] G. W. Mackey, “Induced representations of locally compact groups. II. The Frobenius reciprocity theorem”, Ann. of Math. (2), 58 (1953), 193–221 | DOI | MR | Zbl
[18] P. Deligne, G. Lusztig, “Representations of reductive groups over finite fields”, Ann. of Math. (2), 103:1 (1976), 103–161 | DOI | MR | Zbl
[19] A. Guichardet, J. Soto-Andrade, Produits Tensoriel et Representations Induites, Preprint, 1990
[20] J. Soto-Andrade, J. Vargas, “Twisted spherical functions on the finite Poincaré upper half-plane”, J. Algebra, 248:2 (2002), 724–746 | DOI | MR | Zbl
[21] A. C. Kable, “Legendre sums, Soto-Andrade sums and Kloosterman sums”, Pacific J. Math., 206:1 (2002), 139–157 | DOI | MR | Zbl
[22] M. Tsuchikawa, “The Plancherel transform on $\mathrm{SL}_2(k)$ and its applications to the decomposition of tensor products of irreducible representations”, J. Math. Kyoto Univ., 22:3 (1982/83), 369–433 | MR | Zbl
[23] R. Steinberg, “The representations of $\mathrm{GL}(3,q)$, $\mathrm{GL}(4,q)$, $\mathrm{PGL}(3,q)$ and $\mathrm{PGL}(4,q)$”, Canad. J. Math., 3 (1951), 225–235 | DOI | MR | Zbl