On the Ideals of Torsion-Free Rings of Rank One and Two
Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 432-439.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a torsion-free abelian group of rank one or two. We use the type set of $A$ to give necessary and sufficient conditions for the subgroups of $A$ to be ideals in every ring on $A$.
Keywords: ring over an Abelian group, strongly nil subgroup, strongly non-nil subgroup.
Mots-clés : nil group, torsion-free group
@article{MZM_2012_91_3_a9,
     author = {A. Najafizadeh and A. M. Aghdam and F. Karimi},
     title = {On the {Ideals} of {Torsion-Free} {Rings} of {Rank} {One} and {Two}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {432--439},
     publisher = {mathdoc},
     volume = {91},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a9/}
}
TY  - JOUR
AU  - A. Najafizadeh
AU  - A. M. Aghdam
AU  - F. Karimi
TI  - On the Ideals of Torsion-Free Rings of Rank One and Two
JO  - Matematičeskie zametki
PY  - 2012
SP  - 432
EP  - 439
VL  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a9/
LA  - ru
ID  - MZM_2012_91_3_a9
ER  - 
%0 Journal Article
%A A. Najafizadeh
%A A. M. Aghdam
%A F. Karimi
%T On the Ideals of Torsion-Free Rings of Rank One and Two
%J Matematičeskie zametki
%D 2012
%P 432-439
%V 91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a9/
%G ru
%F MZM_2012_91_3_a9
A. Najafizadeh; A. M. Aghdam; F. Karimi. On the Ideals of Torsion-Free Rings of Rank One and Two. Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 432-439. http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a9/

[1] E. Fried, “On the subgroups of an abelian group that are ideals in every ring”, Proc. Colloq. Abelian Groups, Akadémiai Kiadó, Budapest, 1964, 51–55 | MR | Zbl

[2] A. E. Stratton, “The type set of torsion-free rings of finite rank”, Comment. Math. Univ. St. Paul., 27 (1979), 199–211 | MR | Zbl

[3] A. M. Aghdam, “On the strong nilstufe of rank two torsion free groups”, Acta Sci. Math. (Szeged), 49:1-4 (1985), 53–61 | MR | Zbl

[4] L. Fuchs, Infinite Abelian Groups, Vol. II, Pure Appl. Math., 36-II, Academic Press, New York, 1973 | MR | Zbl

[5] R. A. Beaumont, R. J. Wisner, “Rings with additive group which is a torsion-free group of rank two”, Acta Sci. Math. (Szeged), 20 (1959), 105–116 | MR | Zbl

[6] A. M. Aghdam, A. Najafizadeh, “Square subgroups of rank two abelian groups”, Colloq. Math., 117:1 (2009), 19–28 | DOI | MR | Zbl