On the Chromatic Number for a Set of Metric Spaces
Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 422-431.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of finding the chromatic number of a metric space with a forbidden distance. Using the linear-algebraic technique in combinatorics and convex optimization methods, we obtain a set of new estimates and observe the change of the asymptotic lower bound for the chromatic number of Euclidean space under the continuous change of the metric from $l_1$ to $l_2$.
Keywords: metric space with a forbidden distance, chromatic number, convex optimization, Euclidean space, graph, Karush–Kuhn–Tucker theorem, Lagrange function.
@article{MZM_2012_91_3_a8,
     author = {I. M. Mitricheva (Shitova)},
     title = {On the {Chromatic} {Number} for a {Set} of {Metric} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {422--431},
     publisher = {mathdoc},
     volume = {91},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a8/}
}
TY  - JOUR
AU  - I. M. Mitricheva (Shitova)
TI  - On the Chromatic Number for a Set of Metric Spaces
JO  - Matematičeskie zametki
PY  - 2012
SP  - 422
EP  - 431
VL  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a8/
LA  - ru
ID  - MZM_2012_91_3_a8
ER  - 
%0 Journal Article
%A I. M. Mitricheva (Shitova)
%T On the Chromatic Number for a Set of Metric Spaces
%J Matematičeskie zametki
%D 2012
%P 422-431
%V 91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a8/
%G ru
%F MZM_2012_91_3_a8
I. M. Mitricheva (Shitova). On the Chromatic Number for a Set of Metric Spaces. Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 422-431. http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a8/

[1] A. M. Raigorodskii, “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, UMN, 56:1 (2001), 107–146 | MR | Zbl

[2] A. Soifer, “Khromaticheskoe chislo ploskosti: ego proshloe, nastoyaschee i buduschee”, Matem. prosveschenie, 8, MTsNMO, M., 2004, 185–221

[3] A. M. Raigorodskii, Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007

[4] P. Brass, W. Moser, J. Pach, Research Problems in Discrete Geometry, Springer, New York, 2005 | MR | Zbl

[5] J. Pach, P. K. Agarwal, Combinatorial Geometry, Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley Sons, New York, 1995 | MR | Zbl

[6] V. Klee, S. Wagon, Old and New Unsolved Problems in Plane Geometry and Number Theory, Dolciani Math. Exp., 11, Mathematical Association of America, Washington, DC, 1991 | MR | Zbl

[7] L. A. Székely, “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdös and His Mathematics, II, Bolyai Soc. Math. Stud., 11, Springer-Verlag, Berlin, 2002, 649–666 | MR | Zbl

[8] M. Benda, M. Perles, “Colorings of metric spaces”, Geombinatorics, 9:3 (2000), 113–126 | MR | Zbl

[9] A. M. Raigorodskii, “O khromaticheskom chisle prostranstva”, UMN, 55:2 (2000), 147–148 | MR | Zbl

[10] A. M. Raigorodskii, “O khromaticheskom chisle prostranstva s metrikoi $l_q$”, UMN, 59:5(359) (2004), 161–162 | MR | Zbl

[11] A. M. Raigorodskii, “O khromaticheskikh chislakh metricheskikh prostranstv”, Chebyshevskii sb., 5:1 (9) (2004), 165–173 | MR | Zbl

[12] D. G. Larman, C. A. Rogers, “The realization of distances within sets in Euclidean space”, Mathematika, 19 (1972), 1–24 | DOI | MR | Zbl

[13] Z. Füredi, J.-H. Kang, “Distance graphs on $\mathbb Z^n$ with $l_1$-norm”, Theoret. Comput. Sci., 319:1-3 (2004), 357–366 | MR | Zbl

[14] P. Frankl, R. M. Wilson, “Intersection theorems with geometric consequences”, Combinatorica, 1:4 (1981), 357–368 | DOI | MR | Zbl

[15] F. Kharari, Teoriya grafov, Mir, M., 1973 | MR | Zbl

[16] N. G. de Bruijn, P. Erdős, “A colour problem for infinite graphs and a problem in the theory of relations”, Indag. Math., 13:5 (1951), 371–373 | MR | Zbl

[17] N. Alon, Dzh. Spenser, Veroyatnostnyi metod, Binom. Laboratoriya znanii, M., 2007 | MR | Zbl

[18] B. Bollobás, Random Graphs, Cambridge Stud. Adv. Math., 73, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl

[19] A. M. Raigorodskii, I. I. Timirova, “O Probleme Nelsona–Erdesha–Khadvigera dlya odnoi serii metricheskikh prostranstv”, Chebyshevskii sb., 9:1 (2008), 125–134

[20] K. Prakhar, Raspredelenie prostykh chisel, Mir, M., 1967 | MR | Zbl

[21] A. M. Raigorodskii, I. M. Shitova, “O khromaticheskikh chislakh veschestvennykh i ratsionalnykh prostranstv s veschestvennymi ili ratsionalnymi zapreschennymi rasstoyaniyami”, Matem. sb., 199:4 (2008), 107–142 | MR | Zbl

[22] E. S. Gorskaya, I. M. Mitricheva, V. Yu. Protasov, A. M. Raigorodskii, “Otsenka khromaticheskikh chisel evklidova prostranstva metodami vypukloi minimizatsii”, Matem. sb., 200:6 (2009), 3–22 | MR | Zbl

[23] E. M. Galeev, M. I. Zelikin, S. V. Konyagin, G. G. Magaril-Ilyaev, N. P. Osmolovskii, V. Yu. Protasov, V. M. Tikhomirov, A. V. Fursikov, Optimalnoe upravlenie, MTsNMO, M., 2008