On the Chromatic Number for a Set of Metric Spaces
Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 422-431
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of finding the chromatic number of a metric space with a forbidden distance. Using the linear-algebraic technique in combinatorics and convex optimization methods, we obtain a set of new estimates and observe the change of the asymptotic lower bound for the chromatic number of Euclidean space under the continuous change of the metric from $l_1$ to $l_2$.
Keywords:
metric space with a forbidden distance, chromatic number, convex optimization, Euclidean space, graph, Karush–Kuhn–Tucker theorem, Lagrange function.
@article{MZM_2012_91_3_a8,
author = {I. M. Mitricheva (Shitova)},
title = {On the {Chromatic} {Number} for a {Set} of {Metric} {Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {422--431},
publisher = {mathdoc},
volume = {91},
number = {3},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a8/}
}
I. M. Mitricheva (Shitova). On the Chromatic Number for a Set of Metric Spaces. Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 422-431. http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a8/