On the Chromatic Number for a Set of Metric Spaces
Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 422-431

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of finding the chromatic number of a metric space with a forbidden distance. Using the linear-algebraic technique in combinatorics and convex optimization methods, we obtain a set of new estimates and observe the change of the asymptotic lower bound for the chromatic number of Euclidean space under the continuous change of the metric from $l_1$ to $l_2$.
Keywords: metric space with a forbidden distance, chromatic number, convex optimization, Euclidean space, graph, Karush–Kuhn–Tucker theorem, Lagrange function.
@article{MZM_2012_91_3_a8,
     author = {I. M. Mitricheva (Shitova)},
     title = {On the {Chromatic} {Number} for a {Set} of {Metric} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {422--431},
     publisher = {mathdoc},
     volume = {91},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a8/}
}
TY  - JOUR
AU  - I. M. Mitricheva (Shitova)
TI  - On the Chromatic Number for a Set of Metric Spaces
JO  - Matematičeskie zametki
PY  - 2012
SP  - 422
EP  - 431
VL  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a8/
LA  - ru
ID  - MZM_2012_91_3_a8
ER  - 
%0 Journal Article
%A I. M. Mitricheva (Shitova)
%T On the Chromatic Number for a Set of Metric Spaces
%J Matematičeskie zametki
%D 2012
%P 422-431
%V 91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a8/
%G ru
%F MZM_2012_91_3_a8
I. M. Mitricheva (Shitova). On the Chromatic Number for a Set of Metric Spaces. Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 422-431. http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a8/