Automorphisms of Commutative Moufang Loops Satisfying the Minimality Condition
Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 407-421.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider commutative Moufang loops $Q$ with multiplicative group $\mathfrak{M}$ satisfying the minimality condition for its subloops. Such loops, as well as the class of such loops, are characterized by various subgroups of automorphism groups $\operatorname{Aut}Q$ and $\operatorname{Aut}\mathfrak{M}$. We study the structure of the groups $\operatorname{Aut}Q$ and $\operatorname{Aut}\mathfrak{M}$ and prove that these groups have matrix representations.
Keywords: commutative Moufang loop, Abelian group, quasicyclic group
Mots-clés : automorphism group, subloop, associator, multiplicative group.
@article{MZM_2012_91_3_a7,
     author = {N. T. Lupas\c{c}o and N. I. Sandu},
     title = {Automorphisms of {Commutative} {Moufang} {Loops} {Satisfying} the {Minimality} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {407--421},
     publisher = {mathdoc},
     volume = {91},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a7/}
}
TY  - JOUR
AU  - N. T. Lupasço
AU  - N. I. Sandu
TI  - Automorphisms of Commutative Moufang Loops Satisfying the Minimality Condition
JO  - Matematičeskie zametki
PY  - 2012
SP  - 407
EP  - 421
VL  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a7/
LA  - ru
ID  - MZM_2012_91_3_a7
ER  - 
%0 Journal Article
%A N. T. Lupasço
%A N. I. Sandu
%T Automorphisms of Commutative Moufang Loops Satisfying the Minimality Condition
%J Matematičeskie zametki
%D 2012
%P 407-421
%V 91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a7/
%G ru
%F MZM_2012_91_3_a7
N. T. Lupasço; N. I. Sandu. Automorphisms of Commutative Moufang Loops Satisfying the Minimality Condition. Matematičeskie zametki, Tome 91 (2012) no. 3, pp. 407-421. http://geodesic.mathdoc.fr/item/MZM_2012_91_3_a7/

[1] L. Fuks, Beskonechnye abelevy gruppy, T. 2, Mir, M., 1977 | MR | Zbl

[2] R. H. Bruck, A Survey of Binary Systems, Ergeb. Math. Grenzgeb. Neue Folge, 20, Springer-Verlag, Berlin, 1958 | MR | Zbl

[3] N. I. Sandu, “O tsentralno nilpotentnykh kommutativnykh lupakh Mufang”, Kvazigruppy i lupy, Matem. issled., 51, Shtiintsa, Kishinev, 1979, 145–155 | MR | Zbl

[4] N. I. Sandu, “The commutative Moufang loops with minimum conditions for subloops. I”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2003, no. 3, 25–40 | MR

[5] N. I. Sandu, “Kommutativnye lupy Mufang s konechnymi klassami sopryazhennykh podlup”, Matem. zametki, 73:2 (2003), 269–280 | MR | Zbl

[6] N. I. Sandu, “The commutative Moufang loops with minimum conditions for subloops. II”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2004, no. 2, 33–48 | MR | Zbl

[7] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1977 | MR | Zbl

[8] L. Fuks, Beskonechnye abelevy gruppy, T. 1, Mir, M., 1974 | MR | Zbl

[9] Yu. I. Merzlyakov, “Matrichnoe predstavlenie grupp vneshnikh avtomorfizmov chernikovskikh grupp”, Algebra i logika, 8:4 (1969), 478–482 | MR | Zbl

[10] Yu. I. Merzlyakov, Ratsionalnye gruppy Ch. 1. Algebraicheskie gruppy matrits, Novosibirsk. gos. un-t, Novosibirsk, 1967 | MR

[11] S. N. Chernikov, Gruppy s zadannymi svoistvami sistemy podgrupp, Sovremennaya algebra, Nauka, M., 1980 | MR | Zbl

[12] A. Schlette, “Artinian, almost abelian groups and their groups of automorphisms”, Pacific J. Math., 29:2 (1969), 403–425 | MR | Zbl

[13] A. Maltsev, “Ob izomorfnom predstavlenii beskonechnykh grupp matritsami”, Matem. sb., 8:3 (1940), 405–422 | MR | Zbl